Journal of Electronic Materials

, Volume 38, Issue 7, pp 1030–1036 | Cite as

New Ternary Arsenides for High-Temperature Thermoelectric Applications

  • Hong Xu
  • Tim Holgate
  • Jian He
  • Zhe Su
  • Terry M. Tritt
  • Holger Kleinke
Article

Abstract

Two isostructural materials Mo3(Sb,Te)7 and Re3(Ge,As)7 were synthesized and characterized in our laboratories during the past decade. Both crystallize in the Ir3Ge7 type, possessing the space group \( Im\bar{3}m \). They show excellent potential for thermoelectric energy conversion at high temperatures. Our recent physical properties measurements revealed a higher Seebeck coefficient for the new ternary Re3Sn0.2As6.8, as compared with Re3(Ge,As)7, while the power factors are comparable. Rietveld refinements indicate an increasing unit cell volume with increasing Sn content. It has also been found that intercalation of an additional transition-metal atom (Co, Ni) into the cubic void of Re3(Ge,As)7 can significantly alter the Seebeck coefficient.

Keywords

Crystal structure Rietveld refinement electronic structure thermoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Yang, and T. Caillat, Mat. Res. Bull. 31, 224 (2006).Google Scholar
  2. 2.
    A. F. Ioffe, Physics of Semiconductors. Academic: New York City, NY, 1960.Google Scholar
  3. 3.
    D. M. Rowe, CRC Handbook of Thermoelectrics. CRC: Boca Raton, FL, 1995.Google Scholar
  4. 4.
    T. M. Tritt, Science 283, 804 (1999). doi:10.1126/science.283.5403.804 CrossRefGoogle Scholar
  5. 5.
    F. J. DiSalvo, Science 285, 703 (1999). doi:10.1126/science.285.5428.703 PubMedCrossRefGoogle Scholar
  6. 6.
    D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 (2000). doi:10.1126/science.287.5455.1024 PubMedCrossRefADSGoogle Scholar
  7. 7.
    K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818 (2004). doi:10.1126/science.1092963 PubMedCrossRefADSGoogle Scholar
  8. 8.
    S. R. Brown, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, Chem. Mater. 18, 1873 (2006). doi:10.1021/cm060261t CrossRefGoogle Scholar
  9. 9.
    S.M. Kauzlarich, S.R. Brown, and G.J. Snyder, Dalton Trans. 2099 (2007). doi:10.1039/b702266b.
  10. 10.
    B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett. 86, 4350 (2001). doi:10.1103/PhysRevLett.86.4350 PubMedCrossRefADSGoogle Scholar
  11. 11.
    K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, J. Alloys Compd. 395, 304 (2005). doi:10.1016/j.jallcom.2004.11.035 CrossRefGoogle Scholar
  12. 12.
    E. Dashjav, A. Szczepenowska, and H. Kleinke, J. Mater. Chem. 12, 345 (2002). doi:10.1039/b107468g CrossRefGoogle Scholar
  13. 13.
    N. Soheilnia, H. Xu, H. Zhang, T. M. Tritt, I. Swainson, and H. Kleinke, Chem. Mater. 19, 4063 (2007). doi:10.1021/cm0708517 CrossRefGoogle Scholar
  14. 14.
    A. Brown, Nature 206, 502 (1965). doi:10.1038/206502a0 CrossRefADSGoogle Scholar
  15. 15.
    U. Häussermann, M. Elding-Pontén, C. Svensson, and S. Lidin, Chem. Eur. J. 4, 1007 (1998). doi:10.1002/(SICI)1521-3765(19980615)4:6<1007::AID-CHEM1007>3.0.CO;2-7CrossRefGoogle Scholar
  16. 16.
    F. Gascoin, J. Rasmussen, and G. J. Snyder, J. Alloys Compd. 427, 324 (2007). doi:10.1016/j.jallcom.2006.03.030 CrossRefGoogle Scholar
  17. 17.
    G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, and A. C. Ehrlich, J. Appl. Phys. 79, 4002 (1996). doi:10.1063/1.361828 CrossRefADSGoogle Scholar
  18. 18.
    H. Xu, N. Soheilnia, H. Zhang, P. N. Alboni, T. M. Tritt, and H. Kleinke, Mater. Res. Soc. Proc. 1044, 459 (2008).Google Scholar
  19. 19.
    H. Zhang, J. He, B. Zhang, Z. Su, T. M. Tritt, N. Soheilnia, and H. Kleinke, J. Electron. Mater. 36, 727 (2007). doi:10.1007/s11664-006-0085-1 CrossRefADSGoogle Scholar
  20. 20.
    A. C. Larson, and R. B. von Dreele, GSAS-General Structure Analysis System. Los Alamos National Laboratory: Los Alamos, NM: 2000.Google Scholar
  21. 21.
    B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001). doi:10.1107/S0021889801002242 CrossRefGoogle Scholar
  22. 22.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975). doi:10.1103/PhysRevB.12.3060 CrossRefADSGoogle Scholar
  23. 23.
    H. L. Skriver, The LMTO Method. Springer: Berlin, Germany, 1984.Google Scholar
  24. 24.
    L. Hedin, and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).Google Scholar
  25. 25.
    P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994). doi:10.1103/PhysRevB.49.16223 CrossRefADSGoogle Scholar
  26. 26.
    A. L. Pope, R. T. Littleton IV, and T. M. Tritt, Rev. Sci. Instrum. 72, 3129 (2001). doi:10.1063/1.1380390 CrossRefADSGoogle Scholar
  27. 27.
    N. Soheilnia, E. Dashjav, and H. Kleinke, Can. J. Chem. 81, 1157 (2003). doi:10.1139/v03-112 CrossRefGoogle Scholar
  28. 28.
    L. Pauling, The Nature of the Chemical Bond. 3rd ed.; Cornell University Press: Ithaca, NY, 1948.Google Scholar
  29. 29.
    N. Soheilnia, J. Giraldi, A. Assoud, H. Zhang, T. M. Tritt, and H. Kleinke, J. Alloys Compd. 448, 148 (2008). doi:10.1016/j.jallcom.2006.10.056 CrossRefGoogle Scholar
  30. 30.
    P. Sreeraj, D. Kurowski, R.-D. Hoffmann, Z. Wu, and R. Pöttgen, J. Solid State Chem. 178, 3420 (2005). doi:10.1016/j.jssc.2005.08.021 CrossRefADSGoogle Scholar
  31. 31.
    M. Schlüter, U. Häussermann, B. Heying, and R. Pöttgen, J. Solid State Chem. 173, 418 (2003). doi:10.1016/S0022-4596(03)00133-6 CrossRefADSGoogle Scholar
  32. 32.
    S. Furuseth, and A. Kjekshus, Acta Chem Scand. 20, 245 (1966). doi:10.3891/acta.chem.scand.20-0245 CrossRefGoogle Scholar
  33. 33.
    P. Jensen, and A. Kjekshus, J. Less-Common Met. 13, 357 (1967). doi:10.1016/0022-5088(67)90144-0 CrossRefGoogle Scholar
  34. 34.
    P. Jensen, A. Kjekshus, and T. Skansen, J. Less-Common Met. 17, 455 (1969). doi:10.1016/0022-5088(69)90073-3 CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Hong Xu
    • 1
  • Tim Holgate
    • 2
  • Jian He
    • 2
  • Zhe Su
    • 2
  • Terry M. Tritt
    • 2
  • Holger Kleinke
    • 1
  1. 1.Department of ChemistryUniversity of WaterlooWaterlooCanada
  2. 2.Department of Physics and AstronomyClemson UniversityClemsonUSA

Personalised recommendations