Journal of Electronic Materials

, Volume 38, Issue 3, pp 379–391 | Cite as

Electromigration-Induced Plasticity: Texture Correlation and Implications for Reliability Assessment

  • A.S. Budiman
  • P.R. Besser
  • C.S. Hau-Riege
  • A. Marathe
  • Y.-C. Joo
  • N. Tamura
  • J.R. Patel
  • W.D. Nix
Open Access

Plastic behavior has previously been observed in metallic interconnects undergoing high-current-density electromigration (EM) loading. In this study of Cu interconnects, using the synchrotron technique of white-beam x-ray microdiffraction, we have further found preliminary evidence of a texture correlation. In lines with strong (111) textures, the extent of plastic deformation is found to be relatively large compared with that of weaker textures. We suggest that this strong (111) texture may lead to an extra path of mass transport in addition to the dominant interface diffusion in Cu EM. When this extra mass transport begins to affect the overall transport process, the effective diffusivity, D eff, of the EM process is expected to deviate from that of interface diffusion only. This would have fundamental implications. We have some preliminary observations that this might be the case, and report its implications for EM lifetime assessment herein.


Electromigration copper interconnects texture plasticity reliability dislocations x-ray microdiffraction 



The authors would like to thank Advanced Micro Devices (AMD) for generous support and for fabricating the samples in the study. Bryan Tracy of Spansion provided the FIB images in Fig. 1. One of the authors (A.S.B.) would like to thank John M. Ennals, the the AMD/SRC Program Manager at AMD, for the opportunity of a Summer Internship Program in 2006. Both A.S.B. and W.D.N. gratefully acknowledge support by the US Department of Energy, Office of Basic Energy Sciences through Grant No. DE-FG02-04ER46163. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No.␣DE-AC02-05CH11231 at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL).


  1. 1.
    L.L. Vanasupa, Y.C. Joo, P.R. Besser, S. Pramanick. (1999). J. Appl. Phys. 85(5), 2583. doi: 10.1063/1.369624 CrossRefGoogle Scholar
  2. 2.
    2. B·C. Valek, J.C. Bravman, N. Tamura, A.A. MacDowell, R. Celestre, H. Padmore, R. Spolenak, W.L. Brown, B·W. Batterman, J.R. Patel. Appl. Phys. Lett. 81, 4168 (2002) doi: 10.1063/1.1525880 CrossRefADSGoogle Scholar
  3. 3.
    3. B·C. Valek, N. Tamura, R. Spolenak, W.A. Caldwell, A. MacDowell, R.S. Celestre, H.A. Padmore, J.C. Bravman, B·W. Batterman, W.D. Nix, J.R. Patel. J. Appl. Phys. 94, 3757 (2003) doi: 10.1063/1.1600843 CrossRefADSGoogle Scholar
  4. 4.
    4. A.S. Budiman, N. Tamura, B·C. Valek, K. Gadre, J. Maiz, R. Spolenak, W.D. Nix, J.R. Patel. Appl. Phys. Lett. 88, 233515 (2006) doi: 10.1063/1.2210451 CrossRefADSGoogle Scholar
  5. 5.
    S. Arief, N. Budiman, B.C. Tamura, K. Valek, J. Gadre, R. Maiz, W.A. Spolenak, W.D. Caldwell, D. Nix, and J.R. Patel, Mater. Res. Soc. Symp. Proc., 812, 2004.Google Scholar
  6. 6.
    S. Arief, N. Budiman, B.C. Tamura, K. Valek, J. Gadre, R. Maiz, R. Spolenak, J.R. Patel, and W. D. Nix, Mater. Res. Soc. Symp. Proc., 914, 2006.Google Scholar
  7. 7.
    7. N. Tamura, A.A. MacDowell, R. Spolenak, B·C. Valek, J.C. Bravman, W.L. Brown, R.S. Celestre, H.A. Padmore, B·W. Batterman, J.R. Patel. J. Synchrotron Radiat. 10, 137–143 (2003) doi: 10.1107/S0909049502021362 PubMedCrossRefGoogle Scholar
  8. 8.
    8. R.W. Cahn. (1949) J. Inst. Met. 86, 121Google Scholar
  9. 9.
    9. J.F. Nye. (1953) Acta Metall. 1, 153. doi: 10.1016/0001-6160(53)90054-6.CrossRefGoogle Scholar
  10. 10.
    10. P. Besser, E. Zschech, W. Blum, D. Winter, R. Ortega, S. Rose, M. Herrick, M. Gall, S. Thrasher, M. Tiner, B. Baker, G. Braeckelmann, L. Zhao, C. Simpson, C. Capasso, H. Kawasaki, E. Weitzman. J. Elec. Matls 30(4), 320 (2001) doi: 10.1007/s11664-001-0038-7 CrossRefADSGoogle Scholar
  11. 11.
    J.E. Sanchez Jr., and P.R. Besser, Proceedings of the International Interconnect Technology Conference (IEEE, Piscataway, NY, 1998), p. 233.Google Scholar
  12. 12.
    12. J.M. Paik, K·C. Park, Y.C. Joo. J. Elec. Matls 33(1), 48 (2004) doi: 10.1007/s11664-004-0293-5 CrossRefADSGoogle Scholar
  13. 13.
    13. S·P. Baker, Y.C. Joo, M.P. Knaub, E. Artz. Acta Mater. 48, 2199 (2000) doi: 10.1016/S1359-6454(00)00024-0 CrossRefGoogle Scholar
  14. 14.
    14. H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon, Oxford, 21, 1982 Google Scholar
  15. 15.
    D. Gan, P·S. Ho, Y. Pang, R. Huang, J. Leu, J. Maiz, T. Scherban. J. Mater. Res. 21(6), 1512 (2006) doi: 10.1557/jmr.2006.0196 CrossRefADSGoogle Scholar
  16. 16.
    16. B. Cai, Q.P. Kong, L. Lu, K. Lu. Scr. Mater. 41, 755 (1999) doi: 10.1016/S1359-6462(99)00213-4 CrossRefGoogle Scholar
  17. 17.
    17. W. Dickenscheid, R. Birringer, H. Gleiter, O. Kanert, B. Michel, B. Gunther. Solid State Commun. 79, 683 (1991) doi: 10.1016/0038-1098(91)90613-Z CrossRefADSGoogle Scholar
  18. 18.
    18. Z. Suo. (1994) Acta Metall. Mater. 42, 3581 doi: 10.1016/0956-7151(94)90424-3.CrossRefGoogle Scholar
  19. 19.
    19. A.S. Oates. (1996) J. Appl. Phys. 79, 163. doi: 10.1063/1.360925 CrossRefADSGoogle Scholar
  20. 20.
    J.R. Black, Sixth Annual IEEE Intl. Rel. Phys. Symp. Proc., 1967, p. 148.Google Scholar
  21. 21.
    21. M. Shatzkes, J.R. Lloyd. J. Appl. Phys. 59, 3890 (1986) doi: 10.1063/1.336731 CrossRefADSGoogle Scholar
  22. 22.
    22. K.A. Danso, L. Tullos. Microelectron. Reliab. 21, 513 (1981) doi: 10.1016/0026-2714(81)90242-0 CrossRefGoogle Scholar
  23. 23.
    H.A. Schafft, T.C. Grant, A.N. Saxena, and C.Y. Kao, 23rd Annual IEEE Intl. Rel. Phys. Symp. Proc., 1985, p. 93.Google Scholar
  24. 24.
    24. R. Kirchheim, U. Kaeber. J. Appl. Phys. 70, 172 (1991) doi: 10.1063/1.350305 CrossRefADSGoogle Scholar
  25. 25.
    A.S. Budiman, C.S. Hau-Riege, P.R. Besser, A. Marathe, Y.-C. Joo, N. Tamura, J.R. Patel, and W.D. Nix, 45th Annual IEEE Intl. Rel. Phys. Symp. Proc., 2007, pp. 122–127Google Scholar
  26. 26.
    A.S. Budiman, C.S. Hau-Riege, P.R. Besser, A. Marathe, Y.-C. Joo, N. Tamura, J.R. Patel, and W.D. Nix, 9th Intl. Workshop on Stress-induced Phenomena in Metallization AIP Proc., vol. 945, 2007, p. 56.Google Scholar
  27. 27.
    E. Zschech, M. A. Meyer, and E. Langer, Mater. Res. Soc. Proc. 812, F.7.5.1, 2004 Google Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • A.S. Budiman
    • 1
    • 2
  • P.R. Besser
    • 3
  • C.S. Hau-Riege
    • 3
  • A. Marathe
    • 3
  • Y.-C. Joo
    • 4
  • N. Tamura
    • 5
  • J.R. Patel
    • 1
    • 5
  • W.D. Nix
    • 1
  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  2. 2.Spansion Inc., Technology Reliability Engineering (TRE)SunnyvaleUSA
  3. 3.Advanced Micro Devices, Inc.SunnyvaleUSA
  4. 4.Department of Materials Science and EngineeringSeoul National University (SNU)SeoulSouth Korea
  5. 5.Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL)BerkeleyUSA

Personalised recommendations