Journal of Electronic Materials

, Volume 38, Issue 2, pp 231–240 | Cite as

Anisotropic Crystal Plasticity Finite Element Modeling of the Effect of Crystal Orientation and Solder Joint Geometry on Deformation after Temperature Change

Article

The crystal orientation of the tin phase in a Pb-free Sn solder joint has a significant effect on the stress state, and hence on the reliability of the solder joint. A set of crystal plasticity analyses was used to evaluate stress and strain resulting from a 165°C temperature change in a single-crystal joint using two simplified geometries used in practical solder joints. Phenomenological flow models for ten slip systems were estimated based upon semiquantitative information available in the literature, along with known anisotropic elastic property information. The results show that the internal energy of the system is a strong function of the tin crystal orientation and geometry of the solder joint. The internal energy (and presumably the likelihood of damage) is highest when the crystal c-axis lies in the plane of the substrate, leading to significant plastic deformation. When the a-axis is in the plane of the interface, deformation due to a 165°C temperature change is predominantly elastic. The texture of the copper substrate using isotropic Cu elastic properties, or anisotropic elastic properties with [001] \( \parallel \) substrate normal direction, does␣not have a significant effect on the stress or strain in the Sn phase of the joint.

Keywords

Finite element single crystal tin thermal expansion anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kerr, N. Chawla, Acta Mater. 52 (2004) 4527CrossRefGoogle Scholar
  2. 2.
    Guo F, Choi S, Subramanian KN, Bieler TR, Lucas JP, Achari A, Paruchuri M, Mater. Sci. & Engr. A 351 (2003) 190CrossRefGoogle Scholar
  3. 3.
    Choi S, Lee J, Guo F, Bieler TR, Subramanian KN, and Lucas JP, JOM 53(6) (2001) 22CrossRefGoogle Scholar
  4. 4.
    Wu CML, Yu DQ, Law CMT, Wang L R Mater. Sci. & Engr. R 44 (2004) 1CrossRefGoogle Scholar
  5. 5.
    Amagai M, Watanabe M, Omiya M, Kishimoto K, Shibuya T, Microelectronics Reliability, 42 (2002) 951CrossRefGoogle Scholar
  6. 6.
    Telang AU, Bieler TR, Mason DE, and Subramanian KN, J. Electron Mater., 32 (2003) 1455CrossRefADSGoogle Scholar
  7. 7.
    Anderson IE, Harringa JL, J. Electronic Mater 33 (2004) 1485CrossRefADSGoogle Scholar
  8. 8.
    Zhao Y, Miyashita Y, Mutoh Y, International J. Fatigue 23 (2001) 723CrossRefGoogle Scholar
  9. 9.
    Yoon JW, Jung SB, J. Mater Sci 39 (2004) 4211CrossRefGoogle Scholar
  10. 10.
    Terashima S, Tanaka M, Mater. Trans. 45 (2004) 681CrossRefGoogle Scholar
  11. 11.
    Kanchanomai C, Mutoh Y, Mater. Sci. & Engr. A 381 (2004) 113CrossRefGoogle Scholar
  12. 12.
    Zeng QL, Wang ZG, Xian AP, Shang JK, J. Electronic Materials 34 (2005) 62CrossRefADSGoogle Scholar
  13. 13.
    Lee JG, Guo F, Choi S, Subramanian KN, Bieler TR and Lucas JP, J. Electronic Materials 31 (2002) 946CrossRefADSGoogle Scholar
  14. 14.
    Kato H, Matsubara K, Kageyama K, Mater. Sci. Tech. 19 (2003) 1403CrossRefGoogle Scholar
  15. 15.
    Terashima S, Kariya Y, Hosoi T, Tanaka MJ, Electr. Mater. 32 (2003) 1527CrossRefADSGoogle Scholar
  16. 16.
    Shen Y-L, Chawla N, Ege ES, Deng X. Acta Materialia 53, 2633–2642. (2005)CrossRefGoogle Scholar
  17. 17.
    Ahmad M, Hubbard K, Hu M, J. Electronic Packaging 127, 290–98, (2005).CrossRefGoogle Scholar
  18. 18.
    Sidhu RS, Chawla N, Metallurgical and Materials Transactions 39A(4) 799–810, (2008).CrossRefGoogle Scholar
  19. 19.
    Ye H, Basaran C, Hopkins DC. International Journal of Damage Mechanics 2006, 15(1), 41–67CrossRefGoogle Scholar
  20. 20.
    Dreyer W, Muller WH. International Journal of Solids and Structures 2001, 38,1433–1458.MATHCrossRefGoogle Scholar
  21. 21.
    Lee TY, Tu KN, Kuo SM, Frear DR. J. App. Phy. 2001, 90, 4502–4508.CrossRefADSGoogle Scholar
  22. 22.
    R. Darveaux, Design and Reliability of Solders and Solder␣Interconnections (Warrendale, PA: TMS, 1997), pp. 213–218.Google Scholar
  23. 23.
    H. Solomon, ASME J. Electron. Pack., 113 (1991).Google Scholar
  24. 24.
    Kang SK, Shih DY, Leonard D, Henderson DW, Gosselin T, Cho SI, Yu J, Choi WK, JOM 56(6), 34–38 (2004).CrossRefGoogle Scholar
  25. 25.
    Lu HY, Balkan H, Ng KYS, J Mater Sci, Mater Electron 17, 171–188 (2006).CrossRefGoogle Scholar
  26. 26.
    Takaku Y, Liu XJ, Ohnuma I, Kainuma R, Ishida K, Mater. Trans. 45 (2004) 646.CrossRefGoogle Scholar
  27. 27.
    He M, Chen Z, Qi GJ, Wong CC, Mhaisalkar SG, Thin Solid Films 462 (2004) 363.CrossRefADSGoogle Scholar
  28. 28.
    Ochoa F, Deng X, Chawla N, J. Electronic Materials 33 (2004) 1596.CrossRefADSGoogle Scholar
  29. 29.
    Lau KJ, Tang CY, Tse PC, Chow CL, Ng SP, Tsui CP, Rao B, International J. Fracture 130 (2004) 617.CrossRefGoogle Scholar
  30. 30.
    Choi S, Lee JG, Subramanian KN, Lucas JP, Bieler TR. J. Electron. Mater. 2002, 31(4), 292.CrossRefADSGoogle Scholar
  31. 31.
    F. Guo, J.P. Lucas, and K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 12, 27 (2001).Google Scholar
  32. 32.
    Lee JG, Subramanian KN. Microstructural features contributing to enhanced behavior of Sn-Ag based solder joints, Soldering & Surface Mount Technology 2005, 17, 33–39CrossRefGoogle Scholar
  33. 33.
    Lee JG, Telang AU, Bieler TR, Subramanian KN. J. Electron. Mater 31, (2002) 11CrossRefGoogle Scholar
  34. 34.
    A.U. Telang and T.R. Bieler, Scripta Mater. 52, 1027 (2005).Google Scholar
  35. 35.
    Rhee H, Lucas JP, Subramanian KN (2002) J. Mater. Sci.: Mater. Electron. 13:477CrossRefGoogle Scholar
  36. 36.
    Yang F, Li JCM. J Mater Sci, Mater Electron (2007) 18, 191–210CrossRefGoogle Scholar
  37. 37.
    Ubachs RLJM, Schreurs PJG., Geers MGD. J. Mech. Phys. Solids 2004, 52, 1763–1792.MATHCrossRefADSGoogle Scholar
  38. 38.
    Ubachs RLJM, Schreurs PJG, Geers MGD (2007) Mechanics of Materials 39(7): 685–701.CrossRefGoogle Scholar
  39. 39.
    Gong J, Liu C, Conway PP, Silberschmidt VV. Computational Materials Science 39 (2007) 187–197.CrossRefGoogle Scholar
  40. 40.
    Telang AU, Bieler TR. (2005) JOM 57(6):44–49CrossRefGoogle Scholar
  41. 41.
    A.U. Telang, T.R. Bieler, and M.A. Crimp, Mater. Sci. Eng. A 421, 22 (2006).Google Scholar
  42. 42.
    Telang AU, Bieler TR, Choi S., Subramanian KN (2002) Journal of Materials Research 17(9):2294–2306.CrossRefADSGoogle Scholar
  43. 43.
    Telang AU, Bieler TR, JOM, 57 (2005) 44. CrossRefGoogle Scholar
  44. 44.
    Park S, Dhakal R, Lehman L, Cotts EJ (2007) Acta Mater 55 3253–3260CrossRefGoogle Scholar
  45. 45.
    S. Park, R. Dhakal, L. Lehman, and E.J. Cotts, IEEE Trans. Compon. Pack. Technol. 30, 178 (2007).Google Scholar
  46. 46.
    Lehman LP, Athavale SN, Fullem TZ, Giamis AC, Kinyanjui RK, Lowenstein M, Mather K, Patel R, Rae D, Wang J, Xing Y, Zavalij L, Borgesen P, Cotts EJ. (2004) J Electronic 33(12):1429–1439.CrossRefADSGoogle Scholar
  47. 47.
    Telang AU, Bieler TR, Zamiri A, Pourboghrat F, Acta Materialia 55 (2007) 2265 CrossRefGoogle Scholar
  48. 48.
    Borgesen P, Bieler T, Lehman LP, Cotts EJ. MRS Bulletin April 32 (2007) 360–65.Google Scholar
  49. 49.
    Bieler TR, Jiang H, Lehman LP, Kirkpatrick T, Cotts EJ, Nandagopal B. (2008) IEEE Transactions on Components and Packaging Technologies 31(2):370–381.CrossRefGoogle Scholar
  50. 50.
    Duzgun B, Ekinci AE, Karaman I, Ucar N, J. of Mech. Behavior of Materials, 10 (1999) 187Google Scholar
  51. 51.
    Fujiwara M,Hirokawa T, J. Japan Inst. Metals 51 (1987) 830Google Scholar
  52. 52.
    Dutta I, J. Electronic Materials, 32 (2003) 201CrossRefADSGoogle Scholar
  53. 53.
    P. Sharma and P. Dasgupta, J. Electron. Pack. (Trans. ASME) 124, 292 (2002)Google Scholar
  54. 54.
    Wei Y, Chow CL, Lau KJ, Vianco P, Fang HE, J. Electronic Packaging 126 (2004) 367 CrossRefGoogle Scholar
  55. 55.
    T.R. Bieler and T.K. Lee, Unpublished research.Google Scholar
  56. 56.
    Mayeur JR, McDowell DL (2007) International Journal Of Plasticity 23(9):457–1485.CrossRefGoogle Scholar
  57. 57.
    Venkatramani G, Ghosh S, Mills M (2007) Acta Materialia 55(11):3971–3986.CrossRefGoogle Scholar
  58. 58.
    Werwer M, Cornec A (2006) International Journal of Plasticity 22(9):1683–1698.MATHCrossRefGoogle Scholar
  59. 59.
    Kumar D, Bieler TR, Eisenlohr P, Mason DE, Crimp MA, Roters F, Raabe D (2008) J. Engineering Materials Technology-Trans. ASME 130(2), 021012.CrossRefGoogle Scholar
  60. 60.
    D.G. House, and E.V. Vernon, Brit J Appl Phys, 11 (1960) 254–9.CrossRefADSGoogle Scholar
  61. 61.
    V. T. Desphande, D.B. Sirdeshmukh, Acta Cryst. 15 (1962) 294–295.Google Scholar
  62. 62.
    A. Zamiri (Ph.D. Thesis, Michigan State University, 2008).Google Scholar
  63. 63.
    ABAQUS Manual, Version 6.3 (Providence, RI: Hibbit, Karlsson & Sorensen Inc., 2001).Google Scholar
  64. 64.
    J.W. Hutchison, Proc. R. Soc. Lond. A 319, 247 (1976).Google Scholar
  65. 65.
    Chang, YW, Asaro, RJ, Acta Metallurgica 29 (1981) 241CrossRefGoogle Scholar
  66. 66.
    Peirce, D, Asaro, R, Needleman, A, Acta Metallurgica 30 (1982) 1087CrossRefGoogle Scholar
  67. 67.
    J.O. Suh, K.N. Tu, and N. Tamura, J. Appl. Phys. 102, 063511 (2007).Google Scholar
  68. 68.
    Sundelin JJ, Nurmi ST, Lepisto TK, Mater. Sci. Eng. A 474 (2008) 201–207.CrossRefGoogle Scholar
  69. 69.
    Sylvestre J, Blander A (2008) J Electronic Materials 37(10), 1618–1623.CrossRefADSGoogle Scholar
  70. 70.
    Laurila T, Mattila T, Vuorinen V, Karppinen J, Sippola M, Kivilahti JK (2007) Microelectronics Reliability 47(7), 1135–1144.CrossRefGoogle Scholar
  71. 71.
    Henderson DW, Woods JJ, Gosselin TA, Bartelo J, King DE, Korhonen TM, Korhonen MA, Lehman LP, Kang SK, Lauro P, Shih DY, Goldsmith C, Puttlitz KJ (2004) J Mater Res 19:1608–12.CrossRefADSGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  1. 1.Mechanical EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations