Journal of Electronic Materials

, Volume 37, Issue 12, pp 1799–1805 | Cite as

Comparison of MBE Growth of InSb on Si (001) and GaAs (001)

  • T. Lien Tran
  • Fariba Hatami
  • W. Ted Masselink
  • Vas P. Kunets
  • G.J. Salamo
Open Access
Article

We describe the epitaxial growth of InSb films on both Si (001) and GaAs (100) substrates using molecular-beam epitaxy and discuss the structural and electrical properties of the resulting films. The complete 2 μm InSb films on GaAs (001) were grown at temperatures between 340°C and 420°C and with an Sb/In flux ratio of approximately 5 and a growth rate of 0.2 nm/s. The films were characterized in terms of background electron concentration, mobility, and x-ray rocking curve width. Our best results were for a growth temperature of 350°C, resulting in room-temperature mobility of 41,000 cm2/V s.  For the growth of InSb on Si, vicinal Si(001) substrates offcut by 4° toward (110) were used. We investigated growth temperatures between 340°C and 430°C for growth on Si(001). In contrast to growth on GaAs, the best results were achieved at the high end of the range of T S =  C, resulting in a mobility of 26,100 cm2/V s for a 2 μm film. We also studied the growth and properties of InSb:Mn films on GaAs with Mn content below 1%. Our results showed the presence of ferromagnetic ordering in the samples, opening a new direction in the diluted magnetic semiconductors.

Key words

InSb GaAs Si substrates electron mobility x-ray diffraction (In,Mn)Sb diluted magnetic semiconductor 

Notes

ACKNOWLEDGEMENT

The authors would like to thank O. Bierwagen and M.P. Semtsiv at Humboldt University in Berlin, and J. Herfort at the Paul Drude Institute in Berlin for helpful discussions and assistance.

REFERENCES

  1. 1.
    X. Weng, N.G. Rudawski, P.T. Wang, and R.S. Goldman, J. Appl. Phys. 97, 043713 (2005).CrossRefGoogle Scholar
  2. 2.
    E. Michel, G. Singh, S. Slivken, P. Bove, I. Ferguson, and M. Razeghi, Appl. Phys. Lett. 65, 3338 (1994).CrossRefGoogle Scholar
  3. 3.
    V.K. Dixit, B. Bansal, V. Venkataraman, et al., Appl. Phys. Lett. 80, 2102 (2002).CrossRefGoogle Scholar
  4. 4.
    D.L. Partin, L. Green and J. Heremans, J. Electron. Mater. 23, 75 (1994).CrossRefGoogle Scholar
  5. 5.
    J.-I. Chyi, D. Biswas, S.V. Iyer, et al., Appl. Phys. Lett. 54, 1016 (1989).CrossRefGoogle Scholar
  6. 6.
    S.V. Ivanov, A.A. Boudza, R.N. Kutt, et al., J. Cryst. Growth. 156, 191 (1995).CrossRefGoogle Scholar
  7. 7.
    R. Fischer, H. Morkoç, D.A. Neumann, et al., J. Appl. Phys. 60, 5 (1986).CrossRefGoogle Scholar
  8. 8.
    H.C. Lu, H.R. Fetterman, C.J. Chen. C. Hsu, and T.M. Chen, Solid-State Electron. 36, 533 (1993).CrossRefGoogle Scholar
  9. 9.
    D.M. Li, M. Yamazaki, T. Okamoto, T. Tambo, C. Tatsuyama, Appl. Surf. Sci. 130–132, 101 (1998).CrossRefGoogle Scholar
  10. 10.
    W.K. Liu, J. Winesett, W. Ma, et al., J. Appl. Phys. 84, 4 (1997).Google Scholar
  11. 11.
    M. Mori, N. Akae, K. Uotani, N. Fujimoto, T. Tambo, C. Tatsuyama, Appl. Surf. Sci. 216, 569 (2003).CrossRefGoogle Scholar
  12. 12.
    S.F. Fang, K. Adomi, S. Iyer, et al., J. Appl. Phys. 68, 7 (1990).Google Scholar
  13. 13.
    Bede Scientific QC1a Diffractometer, User guide, England (1997).Google Scholar
  14. 14.
    L.T. van der Pauw, Philips Tech. Rev. 20, 220 (1958).Google Scholar
  15. 15.
    O. Bierwagen, R. Pomraenke, S. Eilers, W.T. Masselink, Phys. Rev. 70, 165307 (2004).CrossRefGoogle Scholar
  16. 16.
    X. Weng, R.S. Goldman, D.L. Partin, and J.P. Heremans, J. Appl. Phys. 88, 11 (2000).CrossRefGoogle Scholar
  17. 17.
    R.L. Petritz, Phys. Rev. 110, 1254 (1958).CrossRefGoogle Scholar
  18. 18.
    J.S. Blakemore, Solid State Physics (Cambridge University Press, 1985), pp. 330–372.Google Scholar
  19. 19.
    R.A. Smith, Semiconductor, 2nd edn (Cambridge University Press, 1978), pp. 77–86.Google Scholar
  20. 20.
    B. Pödör, Phys. Status Solidi 16, K167 (1966).CrossRefGoogle Scholar
  21. 21.
    D.L. Dexter and F. Seitz, Phys. Rev. 86, 964 (1952).CrossRefGoogle Scholar
  22. 22.
    P. Songpongs, T.G. Andersson, M.J. Ekenstedt, J.R. Söderström, and M.M. Cumming, Appl. Phys. Lett. 65, 1433 (1994).CrossRefGoogle Scholar
  23. 23.
    H. Luo, B.D. McCombe, M.H. Na, et al., Physica E 12, 330 (2002).CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • T. Lien Tran
    • 1
  • Fariba Hatami
    • 1
  • W. Ted Masselink
    • 1
  • Vas P. Kunets
    • 2
  • G.J. Salamo
    • 2
  1. 1.Department of PhysicsHumboldt-Universität zu BerlinBerlinGermany.
  2. 2.Department of PhysicsUniversity of ArkansasFayettevilleUSA

Personalised recommendations