Advertisement

Journal of Electronic Materials

, Volume 38, Issue 2, pp 266–272 | Cite as

Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders

  • Seongjun KimEmail author
  • Keun-Soo Kim
  • Sun-Sik Kim
  • Katsuaki Suganuma
Article

Abstract

Interfacial reaction and die attach properties of Zn-xSn (x = 20 wt.%, 30 wt.%, and 40 wt.%) solders on an aluminum nitride–direct bonded copper substrate were investigated. At the interface with Si die coated with Au/TiN thin layers, the TiN layer did not react with the solder and worked as a good protective layer. At the interface with Cu, CuZn5, and Cu5Zn8 IMC layers were formed, the thicknesses of which can be controlled by joining conditions such as peak temperature and holding time. During multiple reflow treatments at 260°C, the die attach structure was quite stable. The shear strength of the Cu/solder/Cu joint with Zn-Sn solder was about 30 MPa to 34 MPa, which was higher than that of Pb-5Sn solder (26 MPa). The thermal conductivity of Zn-Sn alloys of 100 W/m K to 106 W/m K was sufficiently high and superior to those of Au-20Sn (59 W/m K) and Pb-5Sn (35 W/m K).

Keywords

Zn-Sn die attachment high-temperature lead-free solder interfacial reaction stability during reflow shear strength thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.S. Kim, C.H. Yu, N.H. Kim, N.K. Kim, H.J. Chang, and E.G. Chang, Microelectron. Reliab. 43, 757 (2003). doi:10.1016/S0026-2714(03)00060-X CrossRefGoogle Scholar
  2. 2.
    W.D. Zhuang, P.C. Chang, F.Y. Chou, and R.K. Shiue, Microelectron. Reliab. 41, 2011 (2001). doi:10.1016/S0026-2714(01)00101-9 CrossRefGoogle Scholar
  3. 3.
    Y. Nagatomo, T. Nagase, and S. Shimamura, J. Jpn. Inst. Electron. Packag. 3, 330 (2000)Google Scholar
  4. 4.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001). doi:10.1016/S1359-0286(00)00036-X
  5. 5.
    C.Y. Liu and K.N. Tu, J. Mater. Res. 13, 37 (1988). doi:10.1557/JMR.1998.0006 CrossRefADSGoogle Scholar
  6. 6.
    J.H. Kim, S.W. Jeong, and H.M. Lee, J. Electron. Mater. 31, 557 (2002). doi:10.1007/s11664-002-0125-4 CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    C.Y. Liu and K.N. Tu, J. Mater. Res. 13, 37 (1988). doi:10.1557/JMR.1998.0006 CrossRefADSGoogle Scholar
  8. 8.
    J.H. Kim, S.W. Jeong, and H.M. Lee, J. Electron. Mater. 31, 557 (2002). doi:10.1007/s11664-002-0125-4 CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    K.S. Kim, S.H. Hur, and K. Suganuma, Microelectron. Reliab. 43, 259 (2003). doi:10.1016/S0026-2714(02)00239-1 CrossRefGoogle Scholar
  10. 10.
    M. Rettenmayer, P. Lambracht, B. Kempf, and C. Tschudin, J. Electron. Mater. 31, 279 (2002)ADSGoogle Scholar
  11. 11.
    T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, J. Electron. Mater. 28, 1172 (1999). doi:10.1007/s11664-999-0153-4 CrossRefADSGoogle Scholar
  12. 12.
    M. Nobumasa and N. Shuichi. Japan patent 2006-320913 (30 November 2006).Google Scholar
  13. 13.
    K. Suganuma, Japan patent 2004-237375 (26 August 2004).Google Scholar
  14. 14.
    J.E. Lee, K.S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, Mater. Trans. 46, 2413 (2005). doi:10.2320/matertrans.46.2413 CrossRefGoogle Scholar
  15. 15.
    J.E. Lee, K.S. Kim, K. Suganuma, M. Inoue, and G. Izuta, Mater. Trans. 48, 584 (2007). doi:10.2320/matertrans.48.584 CrossRefGoogle Scholar
  16. 16.
    B.J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997). doi:10.1016/S1359-6454(96)00325-4 CrossRefGoogle Scholar
  17. 17.
    S.W. Yoon, J.R. Soh, H.M. Lee, and B.J. Lee, Acta Mater. 45, 951 (1997). doi:10.1016/S1359-6454(96)00253-4 CrossRefGoogle Scholar
  18. 18.
    K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, J. Mater. Res. 13, 2859 (1998). doi:10.1557/JMR.1998.0391 CrossRefADSGoogle Scholar
  19. 19.
    K. Suganuma, T. Murata, H. Noguchi, and Y. Toyada, J. Mater. Res. 15, 884 (2000). doi:10.1557/JMR.2000.0126 CrossRefADSGoogle Scholar
  20. 20.
    H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027 (1996). doi:10.1103/PhysRevB.53.16027 CrossRefADSGoogle Scholar
  21. 21.
    K.N. Tu, T.Y. Lee, J.W. Jang, L. Li, D.R. Frear, K. Zeng, J.K. Kivilahti, J. Appl. Phys. 89, 4843 (2001). doi:10.1063/1.1357469 CrossRefADSGoogle Scholar
  22. 22.
    A.M. Gusak, K.N. Tu, Phys. Rev. B 66, 115403 (2003). doi:10.1103/PhysRevB.66.115403 CrossRefADSGoogle Scholar
  23. 23.
    C.R. Kao, Mater. Sci. Eng. A 238, 196 (1997). doi:10.1016/S0921-5093(97)00449-8 CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • Seongjun Kim
    • 1
    Email author
  • Keun-Soo Kim
    • 2
  • Sun-Sik Kim
    • 2
  • Katsuaki Suganuma
    • 2
  1. 1.Graduate School of EngineeringOsaka UniversityOsakaJapan
  2. 2.Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan

Personalised recommendations