Journal of Electronic Materials

, Volume 38, Issue 2, pp 210–220 | Cite as

Oxidation Behavior of Rare-Earth-Containing Pb-Free Solders

Open Access
Article

We have previously shown that small additions of the rare-earth (RE) element La to Sn-Ag-Cu alloys significantly increases their ductility, without significant loss in the overall strength. However, due to the high reactivity of La with oxygen, oxidation of the La-containing phases can affect the mechanical performance of the solder. In this work, we have investigated the effect of the addition of 2 wt.% Ce, La and Y on the oxidation behavior of Sn-3.9Ag-0.7Cu. Oxidation kinetics were established by heating samples in ambient air to 60°C, 95°C or 130°C for up to 250 h. Microstructural characterization of the samples, before and after oxidation, was conducted in order to determine the influence of RE-containing phases on the oxidation kinetics. The oxidation mechanism, including the phenomenon of Sn whiskering during oxidation, is also discussed.

Keywords

Rare-earth Pb-free solder oxidation 

Notes

Acknowledgements

The authors acknowledge financial support for this research from the Semiconductor Research Corporation (SRC) under Contract # 2005-KJ-1286 (Dr. Scott List, Program Manager, and Drs. M. Renavikar, P. Brofman, and K. Zeng, industrial liaisons). The authors also thank David Wright from the Center for Solid State Science, Arizona State University for his assistance with sealing the ampoules, and Dr. Jason Williams for useful discussions on the oxidation behavior of rare-earth elements.

References

  1. 1.
    A. Ramirez, H. Mavoori, S. Jin. Appl. Phys. Lett. 80(3), 398–400 (2002)CrossRefADSGoogle Scholar
  2. 2.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, L.J. Wang. Mater. Res. 17(12), 3146–3154 (2002)CrossRefADSGoogle Scholar
  3. 3.
    Z. Xia, Z. Chen, Y. Shi, N. Mu, N. Sun. J Electron Mater.31, 564–567 (2002). doi: 10.1007/s11664-002-0126-3 CrossRefADSGoogle Scholar
  4. 4.
    Z.G. Chen, Y.W. Shi, Z.D. Xia, and Y.F. Yan. J. Electron. Mater. 31(10), 1122–1128 (2002)CrossRefADSGoogle Scholar
  5. 5.
    L. Wang, D.Q. Wu, J. Zhao, M.L. Huang. Mater. Lett. 56, 1039–1042 (2002). doi: 10.1016/S0167-577X(02)00672-9 CrossRefGoogle Scholar
  6. 6.
    C.M.L. Wu, C.M.T Law, D.Q. Yu, L. Wang. J. Electron. Mater. 32(2), 63–69 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Z.G. Chen, Y.W. Shi, Z.D. Xia, Y.F. Yan. J. Electron. Mater. 32(4), 235–243 (2003)CrossRefADSGoogle Scholar
  8. 8.
    M. Dittes and H. Walter. Soldering & Surface Mount Tech. 15(1), 50–54 (2003)CrossRefGoogle Scholar
  9. 9.
    D.Q. Yu, J. Zhao, L. Wang. J. Alloy. Compd. 376, 170–175 (2004). doi: 10.1016/j.jallcom.2004.01.012 CrossRefGoogle Scholar
  10. 10.
    C.M.T. Law, C.M.L. Wu, D.Q. Yu, M. Li and D.Z. Chi. IEEE transactions on advanced packaging. 28(2), 252–258 (2005). doi: 10.1109/TADVP.2005.846939 CrossRefGoogle Scholar
  11. 11.
    M.A. Dudek, R.S. Sidhu, N. Chawla, M. Renavikar. J. Electron. Mater. 35(12), 2088–2097 (2006)CrossRefADSGoogle Scholar
  12. 12.
    M.A. Dudek, R.S. Sidhu, N. Chawla. JOM. 58(6), 57–62 (2006)CrossRefGoogle Scholar
  13. 13.
    D.Q. Yu, C.M.L. Wu, Y.W. Wong. J Mater Sci: Mater Electron. 18, 1057–1063 (2007). doi: 10.1007/s10854-006-9114-3 CrossRefGoogle Scholar
  14. 14.
    C.M.L. Wu, Y.W. Wong. J Mater Sci: Mater Electron. 18, 77–91 (2007). doi: 10.1007/s10854-006-9022-6 CrossRefGoogle Scholar
  15. 15.
    H. Hao, J. Tian, Y.W. Shi, Y.P. Lei, Z.D. Xia. J. Electron. Mater. 36(7), 766–774 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Y. Shi, J. Tian, H. Hao, Z. Xia, Y. Lei, F. Guo. J. Alloy. Compd. 453, 180–184 (2008). doi: 10.1016/j.jallcom.2006.11.165 CrossRefGoogle Scholar
  17. 17.
    M. Pei, J. Qu. J. Electron. Mater. 37(3), 331–338 (2008)CrossRefADSGoogle Scholar
  18. 18.
    M.A. Dudek and N. Chawla. J. Electron. Mater. (2008), in preparation.Google Scholar
  19. 19.
    T.H. Chuang. Scripta Mater. 55, 983–986 (2006). doi: 10.1016/j.scriptamat.2006.08.024 CrossRefMathSciNetGoogle Scholar
  20. 20.
    T.H. Chuang, S·F. Yen. J. Electron. Mater. 35(8), 1621–1627 (2006)CrossRefADSGoogle Scholar
  21. 21.
    T.H. Chuang, H.J. Lin, C·C. Chi. Scripta Mater. 56, 45–48 (2007). doi: 10.1016/j.scriptamat.2006.08.061 CrossRefGoogle Scholar
  22. 22.
    T.N. Chuang, C·C. Chi, H.J. Lin. Metall. Mater. Trans. A. 39A, 604–612 (2008). doi: 10.1007/s11661-007-9426-9 CrossRefADSGoogle Scholar
  23. 23.
    B. Jiang, A.P. Xian. Phil. Mag. Let. 87(9), 657–662 (2007)CrossRefADSGoogle Scholar
  24. 24.
    Y. Niu, G.Y. Fu, W.T. Wu, F. Gesmundo. High Temp. Mater. Processes. 18(3), 159–172 (1999)Google Scholar
  25. 25.
    Y. Niu, F. Gesmundo, M. Al-Omary, J. Song. J. Alloy. Compd. 317–318, 573–577 (2001). doi: 10.1016/S0925-8388(00)01390-6 CrossRefGoogle Scholar
  26. 26.
    Y. Niu, Y.S. Li, F. Gesmundo, F. Viani. Intermetallics. 8, 293–298 (2000). doi: 10.1016/S0966-9795(99)00106-5 CrossRefGoogle Scholar
  27. 27.
    I. Anzel, Z. Metallkd. 94, 993 (2003).Google Scholar
  28. 28.
    X. Deng, N. Chawla, F. Tang, I.E. Anderson, and B. Glesson, Materials Science and Technology 2005 (Warrendale, PA: The Minerals, Metals, and Materials Society, 2005).Google Scholar
  29. 29.
    M.A. Dudek and N. Chawla, Mater. Character. 59, 1364 (2008).Google Scholar
  30. 30.
    A. Palenzona, P. Manfrinetti. J. Alloy. Compd. 201, 43–47 (1993). doi: 10.1016/0925-8388(93)90859-L CrossRefGoogle Scholar
  31. 31.
    R. V. Skolozdra, L. G. Akselrud, V. K. Pecharskii, O. E. Koretskaya. Dokl. Akad. Nauk Ukr. RSR, Ser. B. 12, 51 (1986)Google Scholar
  32. 32.
    H. Okamoto, ed., Desk Handbook: Phase Diagrams for Binary Alloys (Materials Park, OH: ASM, 2000).Google Scholar
  33. 33.
    C. Wagner. J. Electrochem. Soc. 99, 369–380 (1952). doi: 10.1149/1.2779605 CrossRefGoogle Scholar
  34. 34.
    K. Hauffe, Oxidation of Metals (New York, NY: Plenum Park, 1965).Google Scholar
  35. 35.
    C. Wagner, J. Electrochem. Soc. 103(10), 571–580 (1956)CrossRefGoogle Scholar
  36. 36.
    C. Wagner, Z. Elecktrochem. 63, 772–782 (1959)Google Scholar
  37. 37.
    J.A. Dean, Lange’s Handbook of Chemistry, 15th ed. (New York, NY: McGraw-Hill, 1999).Google Scholar
  38. 38.
    G.T. Gaylon, L. Palmer, IEEE T. Electron. Pa. M. 28(1), 17–30 (2005)CrossRefGoogle Scholar
  39. 39.
    K·N. Tu, C. Chen, A.T. Wu, J. Mater. Sci: Mater. Electron. 18, 269–281 (2007). doi: 10.1007/s10854-006-9029-z CrossRefGoogle Scholar
  40. 40.
    G.T.T. Sheng, C·F. Hu, W.J. Choi, K·N. Tu, Y.Y. Bong, L. Nguyen, J. App. Phys. 92(1), 64–69 (2002). doi: 10.1063/1.1481202 CrossRefADSGoogle Scholar
  41. 41.
    J. Smetana, IEEE T. Electron. Pa. M. 30(1), 11–22 (2007)CrossRefGoogle Scholar
  42. 42.
    M. Kerr, N. Chawla, Acta Mater. 52(15), 4527–4535 (2004). doi: 10.1016/j.actamat.2004.06.010 CrossRefGoogle Scholar
  43. 43.
    R.S. Sidhu, X. Deng, N. Chawla, Metall. Mater. Trans. A. 39(2), 349–362 (2008). doi: 10.1007/s11661-007-9412-2 CrossRefGoogle Scholar
  44. 44.
    M. Paljević, Z. Ban, J. Nucl. Mater. 95, 253–258 (1980). doi: 10.1016/0022-3115(80)90366-9 CrossRefADSGoogle Scholar
  45. 45.
    M. Paljević, J. Alloy Compd. 191, 27–29 (1993). doi: 10.1016/0925-8388(93)90266-P CrossRefGoogle Scholar
  46. 46.
    P. Koftad, High Temperature Corrosion (New York, NY: Elsevier Applied Science, 1988).Google Scholar
  47. 47.
    M. Zinkevich, Prog. Mater. Sci. 52(4),597–647 (2007)CrossRefGoogle Scholar
  48. 48.
    M.A. Dudek and N. Chawla (2008), unpublished work.Google Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  1. 1.School of Materials, Ira A. Fulton School of EngineeringArizona State UniversityTempeUSA

Personalised recommendations