Journal of Electronic Materials

, Volume 37, Issue 11, pp 1653–1656 | Cite as

Improved Uniformity and Electrical Performance of Continuous-Wave Laser-Crystallized TFTs Using Metal-Induced Laterally Crystallized Si Film

Open Access
Article
  • 210 Downloads

Abstract

Continuous-wave (CW) laser crystallization (CLC) of amorphous Si (α-Si) has previously been employed to fabricate high-performance low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Unfortunately, their uniformity was poor because the shape of the beam profiles was Gaussian. In this study, α-Si film was replaced by Ni-metal-induced laterally crystallized Si (MILC-Si). MILCLC-Si was MILC-Si irradiated by a CW laser (λ ≈ 532 nm and power ≈ 3.8 W). It was found that the performance and uniformity of the metal-induced laterally crystallized continuous-wave laser crystallization - thin film transistors (MILCLC-TFTs) were much better than those of the CLC-TFTs. Therefore, the MILCLC-TFT is suitable for application in systems on panels.

Key words

Metal-induced lateral crystallization continuous-wave laser polycrystalline-silicon thin-film transistors 

Notes

Acknowledgements

This project was funded by Sino American Silicon Products Incorporation and the National Science Council of the Republic of China under Grant Nos. 95-2221-E009-087-MY3. Technical supports from the National Nano Device Laboratory, the Center for Nano Science and Technology, and the Nano Facility Center of the National Chiao Tung University are also acknowledged.

References

  1. 1.
    M. Stewart, R.S. Howell, L. Pires, M.K. Hatalis. IEEE Trans. Electron. Dev. 48, 845 (2001) doi: 10.1109/16.918227 CrossRefGoogle Scholar
  2. 2.
    S.W. Lee, S.K. Joo. IEEE Electron Device Lett. 17, 160 (1996) doi: 10.1109/55.485160 CrossRefGoogle Scholar
  3. 3.
    Z. Meng, M. Wang, M. Wong. IEEE Trans. Electron. Dev. 47, 404 (2000) doi: 10.1109/16.822287 CrossRefGoogle Scholar
  4. 4.
    A. Hara, M. Takei, F. Takeuchi, K. Suga, K. Yoshino, M. Chida, et al. Jpn. J. Appl. Phys. 43, 1269 (2004) doi: 10.1143/JJAP.43.1269 CrossRefGoogle Scholar
  5. 5.
    A. Hara, K. Yoshino, F. Takeuchi, N. Sasaki. Jpn. J. Appl. Phys. 42, 23 (2004) doi: 10.1143/JJAP.42.23 CrossRefGoogle Scholar
  6. 6.
    Y.T. Lin, C. Chen, J.M. Shieh, Y.J. Lee, C.L. Pan, C.W. Cheng, et al. Appl. Phys. Lett. 88, 233511 (2006) doi: 10.1063/1.2209198 CrossRefGoogle Scholar
  7. 7.
    Y.T. Lin, C. Chen, J.M. Shieh, Y.J. Lee, C.L. Pan. Appl. Phys. Lett. 90, 073508 (2007) doi: 10.1063/1.2644927 CrossRefGoogle Scholar
  8. 8.
    S.J. Park, S.H. Kang, Y.M. Ku, and J. Jang, Mat. Res. Soc. Symp. Proc. 814, I2.3.1/A3.3.1 (2004).Google Scholar
  9. 9.
    C.M. Hu, Y.S. Wu, C.C. Lin. IEEE Electron Device Lett. 28, 1000 (2007) doi: 10.1109/LED.2007.907267 CrossRefGoogle Scholar
  10. 10.
    E. Robert, R. Hill, and R. Abbaschian, Physical Metallurgy Principles, 3rd ed. (Boston: Thomson, 1992), p. 254.Google Scholar
  11. 11.
    C.W. Chao, Y.S. Wu, G.R. Hu, M.S. Feng. Jpn. J. Appl. Phys. 42, 1556 (2003) doi: 10.1143/JJAP.42.1556 CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chiao Tung UniversityHsinchuTaiwan, Republic of China

Personalised recommendations