Journal of Electronic Materials

, Volume 37, Issue 11, pp 1653–1656

Improved Uniformity and Electrical Performance of Continuous-Wave Laser-Crystallized TFTs Using Metal-Induced Laterally Crystallized Si Film

Open Access


Continuous-wave (CW) laser crystallization (CLC) of amorphous Si (α-Si) has previously been employed to fabricate high-performance low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Unfortunately, their uniformity was poor because the shape of the beam profiles was Gaussian. In this study, α-Si film was replaced by Ni-metal-induced laterally crystallized Si (MILC-Si). MILCLC-Si was MILC-Si irradiated by a CW laser (λ ≈ 532 nm and power ≈ 3.8 W). It was found that the performance and uniformity of the metal-induced laterally crystallized continuous-wave laser crystallization - thin film transistors (MILCLC-TFTs) were much better than those of the CLC-TFTs. Therefore, the MILCLC-TFT is suitable for application in systems on panels.

Key words

Metal-induced lateral crystallization continuous-wave laser polycrystalline-silicon thin-film transistors 

Copyright information

© TMS 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chiao Tung UniversityHsinchuTaiwan, Republic of China

Personalised recommendations