Journal of Electronic Materials

, Volume 37, Issue 10, pp 1618–1623 | Cite as

Large-Scale Correlations in the Orientation of Grains in Lead-Free Solder Joints

Open Access
Article

A large number of lead-free Sn-Ag-Cu controlled collapse chip connection (C4) solder joints (∼100 μm in diameter) in flip-chip microelectronic packages were studied by electron backscatter diffraction (EBSD) in order to describe the statistical distribution of grain size and coincident site lattice boundaries associated with 60 deg twins in the Sn phase, as a function of silver content. It is shown that lower silver content results in smaller grains, and a lower propensity for grains to exhibit twinning symmetries. Indirect measurements of the creep properties of these joints were also obtained as a function of silver content, showing that, in the strain rate and temperature conditions that are the most relevant to the microelectronic industry, solder joints with low silver content are more susceptible to creep deformation.

Keywords

Sn-Ag-Cu solder joints lead-free microstructure plastic creep grain size twinned grain boundaries 

Notes

Acknowledgements

The authors are grateful to Donald W. Henderson for sharing his vast expertise on the subject, in particular on models for the influence of Ag on the creep behavior. The authors also acknowledge the careful review of this manuscript by Brian R. Sundlof, David Danovitch, and Peter Brofman. This work was partially accomplished using the facilities at Hydro-Quebec, with the help of Pierre Hovington.

References

  1. 1.
    F. Yang and J.C.M. Li, J. Mater. Sci. Mater. Electron. 18, 191 (2007)Google Scholar
  2. 2.
    D.W. Henderson et al. J. Mater. Res. 19, 1608 (2004). doi: 10.1557/JMR.2004.0222 CrossRefGoogle Scholar
  3. 3.
    K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002). doi: 10.1016/S0921-5093(01)01828-7 CrossRefGoogle Scholar
  4. 4.
    S. Wiese et al., IEEE Proceedings of the 57th Electronic Components and Technology Conference (ECTC’07) (2007), pp. 548–557Google Scholar
  5. 5.
    T.-M.K. Korhonen, J. Electron. Mater. 33, 1581 (2004). doi: 10.1007/s11664-004-0101-2 CrossRefGoogle Scholar
  6. 6.
    J.A. Rayne, B.S. Chandrasekhar, Phys. Rev. 120, 1658 (1960). doi: 10.1103/PhysRev.120.1658 CrossRefGoogle Scholar
  7. 7.
    A.U. Telang, T.R. Bieler, D.E. Mason, K.N. Subramanian, J. Electron. Mater. 32, 1455 (2003). doi: 10.1007/s11664-003-0115-1 CrossRefGoogle Scholar
  8. 8.
    C. Odegard et al., IEEE Proceedings of the 55th Electronic Components and Technology Conference (ECTC’05) (2005), pp. 1163–1171Google Scholar
  9. 9.
    M. Uchida et al., IEEE Proceedings of the 57th Electronic Components and Technology Conference (ECTC’07) (2007), pp. 885–891Google Scholar
  10. 10.
    J. Sylvestre, A. Blander, V. Oberson, E. Perfecto, and K.␣Srivastava, IEEE Proceedings of the 58th Electronic Components and Technology Conference (ECTC’08) (2008)Google Scholar
  11. 11.
    R. Darveaux, Trans. ASME J. Electron. Packaging. 124, 147 (2002)CrossRefGoogle Scholar
  12. 12.
    J.G. Lee, A. Telang, K.N. Subramanian, T.R. Bieler, J. Electron. Mater. 31, 1152 (2002) doi: 10.1007/s11664-002-0004-z CrossRefGoogle Scholar
  13. 13.
    J.O. Suh et al., IEEE Proceedings of the 56th Electronic Components and Technology Conference (ECTC’06) (2006), 4 ppGoogle Scholar
  14. 14.
    T.R. Bieler et al., IEEE Proceedings of the 56th Electronic Components and Technology Conference (ECTC’06) (2006), pp. 1462–1467Google Scholar
  15. 15.
    L.P. Lehman et al. J. Electron. Mater. 33, 1429 (2004) doi: 10.1007/s11664-004-0083-0 CrossRefGoogle Scholar
  16. 16.
    A.U. Telang, T.R. Bieler, J. Electron. Mater. 57, 44 (2005)Google Scholar
  17. 17.
    S. Yi, G.X. Luo, K.S. Chian, J. Electron Packaging 124, 91 (2002) doi: 10.1115/1.1451845 CrossRefGoogle Scholar
  18. 18.
    P.P. Jud, G. Grossman, U. Sennhauser, P.J. Uggowitzer, J. Electron. Mater. 34, 1206 (2005)CrossRefGoogle Scholar
  19. 19.
    G. Wirmark, J.-O. Nilsson, G.L. Dunlop, Philos. Mag. A 1, 93 (1981) doi: 10.1080/01418618108239395 CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  1. 1.IBM Systems & Technology Group – Global Engineering SolutionsBromontCanada

Personalised recommendations