Journal of Electronic Materials

, Volume 37, Issue 7, pp 1029–1034 | Cite as

Interface-Charge-Coupled Polarization Response of Pt-BaTiO3-ZnO-Pt Heterojunctions: A Physical Model Approach

  • Venkata M. Voora
  • T. Hofmann
  • M. Brandt
  • M. Lorenz
  • M. Grundmann
  • N. Ashkenov
  • M. Schubert
Article

Abstract

Heterojunctions composed of wurtzite-structure (piezoelectric) ZnO and perovskite-structure (ferroelectric) BaTiO3 are very interesting because of the previously observed ionic lattice polarization coupling at their interfaces. We report electric Sawyer-Tower polarization hysteresis measurements and analysis of a ZnO-BaTiO3 heterostructure with Pt front and back contacts deposited by pulsed laser deposition onto a (001) silicon substrate. The ZnO layer is n-type (Nc = 5.5 × 1016 cm−3), and the BaTiO3 (BTO) layer is highly resistive. We observe a strong asymmetric ferroelectric hysteresis, which we attribute to a rectifying depletion layer formation between the ZnO and BaTiO3 layers. The coupling between the wurtzite-structure and perovskite-structure interface polarization influences the depletion layer formation. We develop a physical model for the electric Sawyer-Tower measurements. Our model includes the effects of the depletion layer formation inside the ZnO layer, the interface charge coupling between the ZnO and BaTiO3 layers, and the field-dependent ferroelectric polarization inside the BTO. We obtain a very good agreement between our model-generated data and our experiment. We identify voltages in forward and reverse direction at which the depletion layer opens or closes. These voltages are asymmetric, and reveal the effect of the spontaneous piezoelectric (nonswitchable) interface charge of ZnO, which we determine from our analysis here as Psz = −4.1 μC/cm2.

Keywords

Ferroelectric semiconductors heterojunctions thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.R. Bowen, J. Gittings, I.G. Turner, F. Baxter, and J. B. Chaudhuri, Appl. Phys. Lett. 89, 132906 (2006).CrossRefGoogle Scholar
  2. 2.
    K. Ishikawa, and T. Uemori, Phys. Rev. B 60, 11841 (1999).CrossRefGoogle Scholar
  3. 3.
    W. Zhong, D. Vanderbilt, and K.M. Rabe, Phys. Rev. B 25, 6301 (1995).CrossRefGoogle Scholar
  4. 4.
    C. Bundesmann, R. Schmidt-Grund, and M. Schubert, Optical Properties of Zinc Oxide and related Compounds, In: Zinc Oxide as Transparent Electronic Material and its Application in Thin Film Solar Cells, edited by A. Klein, and K. Ellmer (Springer, Berlin, 2007).Google Scholar
  5. 5.
    M. Lorenz, ”Pulsed Laser Deposition of ZnO-based Thin Films“, In: Zinc Oxide as Transparent Electronic Material and its Application in Thin Film Solar Cells, edited by A. Klein, and K. Ellmer (Springer, Berlin, 2007).Google Scholar
  6. 6.
    M. Schubert, N. Ashkenov, T. Hofmann, H. Hochmuth, M. Lorenz, M. Grundmann, and G. Wagner, Ann. Phys. 13, 61 (2004).CrossRefGoogle Scholar
  7. 7.
    B.N. Mbenkum, N. Ashkenov, M. Schubert, M. Lorenz, H. Hochmuth, D. Michel, M. Grundmann, and G. Wagner, Appl. Phys. Lett. 86, 091904 (2005).CrossRefGoogle Scholar
  8. 8.
    N. Ashkenov, M. Schubert, E. Twerdowski, H.V. Wenckstern, B.N. Mbenkum, H. Hochmuth, M. Lorenz, W. Grill, and M. Grundmann, Thin Solid Films 486, 153 (2005).CrossRefGoogle Scholar
  9. 9.
    J. Yu, H. Wang, B. Zhao, Y. Wang, D. Guo, J. Gao, W. Zhou, and J. Xie, Jpn. J. Appl. Phys. 43, 2435 (2004).CrossRefGoogle Scholar
  10. 10.
    Y. Watanabe, Y. Matsumoto, and M. Tanamura, Jpn. J. Appl. Phys. 34, 5254 (1995).CrossRefGoogle Scholar
  11. 11.
    N. Kumari, J. Parui, K.B.R. Varma, and S.B. Krupanidhi, Sol. Stat. Commun. 137, 566 (2006).CrossRefGoogle Scholar
  12. 12.
    M.W.J. Prins, K.O. Grosse-Holz, G. Müller, J.F.M. Cillessen, J.B. Giesbers, R.P. Weening, and R.M. Wolf, Appl. Phys. Lett. 68, 3650 (1996).CrossRefGoogle Scholar
  13. 13.
    E. Cagin, D.Y. Chen, J.J. Siddiqui and J.D. Phillips, J. Phys. D: Appl. Phys. 40, 2430 (2007).CrossRefGoogle Scholar
  14. 14.
    S.L. Miller, R.D. Nasby, J.R. Schwank, M.S. Rodgers, and P.V. Dressendorfer, J. Appl. Phys. 63, 6463 (1990).CrossRefGoogle Scholar
  15. 15.
    S.L. Miller, J.R. Schwank, R.D. Nasby, and M.S. Rodgers, J. Appl. Phys. 70, 2849 (1991).CrossRefGoogle Scholar
  16. 16.
    C.H. Tsang, C.K. Wong, and F.G. Shin, J. Appl. Phys. 98, 084103 (2005).CrossRefGoogle Scholar
  17. 17.
    Z. Ye, M.H. Tang, C.P. Cheng, Y.C. Zhou, X.J. Zhou, and Z.S. Hu, J. Appl. Phys. 100, 094101 (2006).CrossRefGoogle Scholar
  18. 18.
    F. Bernardini and V. Fiorentini Phys. Rev. B 56, R10024 (1997).CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • Venkata M. Voora
    • 1
  • T. Hofmann
    • 1
  • M. Brandt
    • 2
  • M. Lorenz
    • 2
  • M. Grundmann
    • 2
  • N. Ashkenov
    • 2
  • M. Schubert
    • 1
  1. 1.Department of Electrical Engineering, and Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Institut für Experimentelle Physik IIUniversität LeipzigLeipzigGermany

Personalised recommendations