Journal of Electronic Materials

, Volume 37, Issue 9, pp 1497–1503 | Cite as

Epitaxial Lead Chalcogenides on Si for Mid-IR Detectors and Emitters Including Cavities

  • H. ZoggEmail author
  • M. Arnold
  • F. Felder
  • M. Rahim
  • C. Ebneter
  • I. Zasavitskiy
  • N. Quack
  • S. Blunier
  • J. Dual

Lead chalcogenide (IV–VI narrow-gap semiconductor) layers on Si or BaF2(111) substrates are employed to realize two mid-infrared optoelectronic devices for the first time. A tunable resonant cavity enhanced detector is realized by employing a movable mirror. Tuning is across the 4 μm to 5.5 μm wavelength range, and linewidth is <0.1 μm. Due to the thin (0.3 μm) PbTe photodiode inside the cavity, a higher sensitivity at higher operating temperatures was achieved as compared to conventional thick photodiodes. The second device is an optically pumped vertical external-cavity surface-emitting laser with PbTe-based gain layers. It emits at ∼5 μm wavelength and with output power up to 50 mW pulsed, or 3 mW continuous wave at 100 K.


Mid-infrared optoelectronic devices VECSEL RCED lead chalcogenides epitaxy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Rogalski, K. Adamiec, J. Rutkowski, Narrow Gap Semiconductor Photodiodes, SPIE press, Bellingham, WA, (2000)Google Scholar
  2. 2.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)CrossRefGoogle Scholar
  3. 3.
    P. Müller, H. Zogg, A. Fach, J. John, C. Paglino, A.N. Tiwari, M. Krejci, G. Kostorz, Phys. Rev. Lett. 78, 3007 (1997)CrossRefGoogle Scholar
  4. 4.
    H. Zogg, S. Blunier, T. Hoshino, C. Maissen, J. Masek, A.N. Tiwari, IEEE Trans. Electron Dev. 38, 1110 (1991)CrossRefGoogle Scholar
  5. 5.
    H. Zogg, K. Alchalabi, D. Zimin, K. Kellermann, IEEE Trans. Electron. Dev. 50, 209 (2003)CrossRefGoogle Scholar
  6. 6.
    W. Heiss, T. Schwarzl, and G. Springholz, Proc. 9th Int. Conf. on Narrow Gap Semiconductors, Berlin, ed. N. Puhlmann, H.-U. Müller, and M. von Ortenberg, 1999, p. 61Google Scholar
  7. 7.
    M.S. Unlü and S. Strite, J. Appl. Phys. 78, 607 (1995)CrossRefGoogle Scholar
  8. 8.
    C.A. Musca, J. Antoszewski, K.J. Winchester, A.J. Keating, T. Nguyen, K.K.M.B.D. Silva, J.M. Dell, L. Faraone, P. Mitra, J.D. Beck, M.R. Skokan, J.E. Robinson, IEEE Electron Dev. Lett. 26, 888 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Arnold, D. Zimin, H. Zogg, Appl. Phys. Lett. 87, 141103 (2005)CrossRefGoogle Scholar
  10. 10.
    F. Felder, M. Arnold, M. Rahim, C. Ebneter, and H. Zogg, Appl. Phys. Lett. 91, 101102 (2007)CrossRefGoogle Scholar
  11. 11.
    N. Quack, S. Blunier, J. Dual, M. Arnold, F. Felder, C. Ebneter, M. Rahim, and H. Zogg, Sensor Actuat. A Phys. 143, 29–33 (2008)Google Scholar
  12. 12.
    N. Quack, S. Blunier, J. Dual, M. Arnold, F. Felder, C. Ebneter, M. Rahim, and H. Zogg, J. Opt. A: Pure Appl. Opt. 10, 044015 (2008)Google Scholar
  13. 13.
    M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian, IEEE Photon. Technol. Lett. 9, 1063 (1997)CrossRefGoogle Scholar
  14. 14.
    J.M. Hopkins, A.J. Maclean, E. Riis, D. Burns, N. Schulz, M. Rattunde, C. Manz, K. Köhler, J. Wagner. Optics Express. 15, 8212 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Wagner, N. Schulz, M. Rattunde, C. Ritzenthaler, C. Manz, C. Wild, K. Köhler, Phys. Stat. Sol. (c) 4, 1597 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, D. Romanini, IEEE Photon. Technol. Lett. 17, 2020 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Fürst, H. Pascher, T. Schwarzl, M. Böberl, W. Heiss, G. Springholz, G. Bauer, Appl. Phys. Lett. 81, 208 (2002)CrossRefGoogle Scholar
  18. 18.
    T. Schwarzl, G. Springholz, M. Böberl, E. Kaufmann, J. Roither, W. Heiss, J. Fürst, H. Pascher, Appl. Phys. Lett. 86, 031102 (2005)CrossRefGoogle Scholar
  19. 19.
    H.Z. Xu, F. Zhao, A. Majumdar, Z. Shi, Electron. Lett. 39, 659 (2003)CrossRefGoogle Scholar
  20. 20.
    F. Zhao, H. Wu, L. Jayasinghe, Z. Shi, Appl. Phys. Lett. 80, 1129 (2002)CrossRefGoogle Scholar
  21. 21.
    K. Kellermann, D. Zimin, K. Alchalabi, P. Gasser, N.A. Pikhtin, H. Zogg, J. Appl. Phys. 94, 7053 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Khosravani, Z. Shi, Appl. Phys. Lett. 78, 139 (2001)CrossRefGoogle Scholar
  23. 23.
    M. Rahim, M. Arnold, F. Felder, K. Behfar, H. Zogg, Appl. Phys. Lett. 91, 151102 (2007)CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • H. Zogg
    • 1
    Email author
  • M. Arnold
    • 1
  • F. Felder
    • 1
  • M. Rahim
    • 1
  • C. Ebneter
    • 1
  • I. Zasavitskiy
    • 2
  • N. Quack
    • 3
  • S. Blunier
    • 3
  • J. Dual
    • 3
  1. 1.Thin Film Physics GroupETH ZurichZurichSwitzerland
  2. 2.P.N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Mechanical SystemsETH ZurichZurichSwitzerland

Personalised recommendations