Advertisement

Journal of Electronic Materials

, Volume 37, Issue 9, pp 1406–1410 | Cite as

MBE HgCdTe Technology: A Very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic

  • W.E. Tennant
  • Donald Lee
  • Majid Zandian
  • Eric Piquette
  • Michael Carmody
Article

Abstract

“Rule 07,” a simple empirical relationship, conveniently estimates state- of-the-art HgCdTe dark current performance over 13 orders of magnitude, covering wavelength ranges form short-wave infrared (SWIR) to long-wave infrared (LWIR), from room temperature to liquid nitrogen temperatures. The best HgCdTe, in some cases, approaches the external radiative limit of performance, but is typically two to three orders of magnitude above that, being limited by defect generation centers as yet unidentified and/or by Auger mechanisms. The empirical relationship represents the range of detectors fabricated at Teledyne using our molecular beam epitaxy (MBE)-based double-layer planar heterostructure (DLPH) technology, but also appears to characterize good detectors from other laboratories.

Keywords

Infrared detector IR HgCdTe Focal-Plane Array MBE InSb InGaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bajaj, J.M. Arias, M. Zandian, D.D. Edwall, J.G. Pasko, L.O. Bubulac, and L.J. Kozlowski, J. Electron. Mater. 25, 1394 (1996)CrossRefGoogle Scholar
  2. 2.
    J.M. Arias, J.G. Pasko, M. Zandian, J. Bajaj, L.J. Kozlowski, R.E. DeWames, and W.E. Tennant, Proc. SPIE Symp. Producibility II–VI Mater. Devices 2228, 210 (1994)Google Scholar
  3. 3.
    J. Bajaj and A. Joshi, Proceedings of the International Workshop on Semiconductor Devices IWPSD 2005, ed. Agarwal and Singh (New Delhi: Allied Publishers, 2005), EN66839Google Scholar
  4. 4.
    J.R. Lindle, W.W. Bewley, I. Vurgaftman, J.R. Meyer, M.L. Thomas, W.E. Tennant, D.D. Edwall, and E. Piquette, J. Electr. Mater. 36, 988 (2007)CrossRefGoogle Scholar
  5. 5.
    W.E. Tennant and C. Cabelli, Mat. Res. Soc. Syp. Proc. 484, 221 (1998)Google Scholar
  6. 6.
    M. Zandian, J.D. Garnett, R.E. DeWames, M. Carmody, J.G. Pasko, M. Farris, C.A. Cabelli, D.E. Cooper, G. Hildebrandt, J. Chow, J.M. Arias, K. Vural, D.N.B. Hall, J. Electron. Mater. 32, 803 (2003)CrossRefGoogle Scholar
  7. 7.
    S.E. Schacham and E. Finkman, J. Appl. Phys. 57, 2001 (1985)CrossRefGoogle Scholar
  8. 8.
    M.A. Kinch, Proc. SPIE 4369, ed. B.F. Andresen, G.F. Fulop, and M. Strojnik, 566 (2001)Google Scholar
  9. 9.
    M.B. Reine, K.R. Maschhoff, S.P. Tobin, P.W. Norton, J.A. Mroczkowski, and E.E. Krueger, Semicond. Sci. Technol. 8, 788 (1993)CrossRefGoogle Scholar
  10. 10.
    S.P. Tobin, M.H. Weiler, M.A. Hutchins, T. Parodos, and P.W. Norton, J. Electron. Mater. 28, 596 (1999)CrossRefGoogle Scholar
  11. 11.
    A. Manissadjian, P. Tribolet, G. DeStefanis, and E. De Borniol, Proc. SPIE 5783, ed. B.F. Andresen and G.F. Fulop, 231 (2005)Google Scholar
  12. 12.
    A. Rogalski, Infrared Phys. Technol. 43, 187 (2002)CrossRefGoogle Scholar
  13. 13.
    M. Cohen (Presentation at 15th NDIA Night Ops Symposium 10–12 October 2000 (from Defense Technical Information Center archive))Google Scholar
  14. 14.
    R.E. DeWames, D.D. Edwall, M. Zandian, L.O. Bubulac, J.G. Pasko, W.E. Tennant, J.M. Arias, and A. D’Sousa, J. Electron. Mater. 27, 1998 (722)Google Scholar
  15. 15.
    G.M. Williams and R.E. DeWames, J. Electron. Mater. 24, 1239 (1995) and references contained thereinCrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • W.E. Tennant
    • 1
  • Donald Lee
    • 1
  • Majid Zandian
    • 1
  • Eric Piquette
    • 1
  • Michael Carmody
    • 1
  1. 1.Teledyne Imaging SensorsCamarilloUSA

Personalised recommendations