Journal of Electronic Materials

, Volume 37, Issue 6, pp 792–805 | Cite as

Formation of Intermetallic Compounds Between Liquid Sn and Various CuNi x Metallizations

Open Access


Interfacial reactions between liquid Sn and various Cu-Ni alloy metallizations as well as the subsequent phase transformations during the cooling were investigated with an emphasis on the microstructures of the reaction zones. It was found that the extent of the microstructurally complex reaction layer (during reflow at 240°C) does not depend linearly on the Ni content of the alloy metallization. On the contrary, when Cu is alloyed with Ni, the rate of thickness change of the total reaction layer first increases and reaches a maximum at a composition of about 10 at.% Ni. The reaction layer is composed of a relatively uniform continuous (Cu,Ni)6Sn5 reaction layer (a uniphase layer) next to the NiCu metallizations and is followed by the two-phase solidification structures between the single-phase layer and Sn matrix. The thickness of the two-phase layer, where the intermetallic tubes and fibers have grown from the continuous interfacial (Cu,Ni)6Sn5 layer, varies with the Ni-to-Cu ratio of the alloy metallization. In order to explain the formation mechanism of the reaction layers and their observed kinetics, the phase equilibria in the Sn-rich side of the SnCuNi system at 240°C were evaluated thermodynamically utilizing the available data, and the results of the Sn/Cu x Ni1−x diffusion couple experiments. With the help of the assessed data, one can also evaluate the minimum Cu content of Sn-(Ag)-Cu solder, at which (Ni,Cu)3Sn4 transforms into (Cu,Ni)6Sn5, as a function of temperature and the composition of the liquid solders.


Intermetallic formation soldering lead-free solidification kinetics metastable solubility reliability phase diagram 


  1. 1.
    J. Kivilahti, IEEE T. Compon. Pack. T. B. 18, 326 (1995)CrossRefGoogle Scholar
  2. 2.
    J.K. Kivilahti, JOM-J. Min. Met. Mat. S., 54, 52 (2002)Google Scholar
  3. 3.
    T.T. Mattila, J.K. Kivilahti, J. Electron. Mater. 34, 969 (2005)CrossRefGoogle Scholar
  4. 4.
    K.N. Tu, Acta Metall. Mater. 21, 347 (1973)CrossRefGoogle Scholar
  5. 5.
    K.N. Tu, R. Thompson, Acta Metall. Mater. 30, 947 (1982)CrossRefGoogle Scholar
  6. 6.
    K.N. Tu, Mater. Chem. Phys. 46, 217 (1996)CrossRefGoogle Scholar
  7. 7.
    M. Oh (Doctoral thesis, Leigh University, 1994)Google Scholar
  8. 8.
    H. Bhedwar, K. Ray, S. Kulkarni, V. Balasubramanian, Scripta Metall. Mater. 6, 919 (1972)Google Scholar
  9. 9.
    M. Onishi, H. Fujibuchi, T. Jpn. I. Met. 16, 539 (1975)Google Scholar
  10. 10.
    Z. Mei, A. Sunwoo, J. Morris, Metall. Trans. A 23A, 857 (1992)Google Scholar
  11. 11.
    S. Bader, W. Gust, H. Hieber, Acta Metall. Mater. 43, 329 (1995)Google Scholar
  12. 12.
    J. Haimovich, Weld. J. 68, 102 (1989)Google Scholar
  13. 13.
    P. Oberndorff (Doctoral thesis, Eindhoven University of Technology, 2001)Google Scholar
  14. 14.
    W.T. Chen, C.E. Ho, C.R. Kao, J. Mater. Res. 17, 263 (2002)CrossRefGoogle Scholar
  15. 15.
    C.E. Ho, R.Y. Tsai, Y.L. Lin, C.R. Kao, J. Electron. Mater. 31, 584 (2002)CrossRefGoogle Scholar
  16. 16.
    P.-L. Wu, M.-K. Huang, C. Lee, S.-R. Tzan, J. Electron. Mater. 33, 157 (2004)CrossRefGoogle Scholar
  17. 17.
    J.Y. Tsai, Y.C. Hu, C.M. Tsai, C.R. Kao, J. Electron. Mater. 32, 1203 (2003)CrossRefGoogle Scholar
  18. 18.
    C.E. Ho, Y.L. Lin, S.C. Yang, C.R. Kao, D.S. Jiang, J. Electron. Mater. 35, 1017 (2006)CrossRefGoogle Scholar
  19. 19.
    C.E. Ho, Y.L. Lin, S.C. Yang, and C.R. Kao, Proceedings of 10th International Symposium on Advanced Packaging Materials, IEEE (2005)Google Scholar
  20. 20.
    W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, C.R. Kao, Mat. Sci. Eng. A Struct. 396, 385 (2005)CrossRefGoogle Scholar
  21. 21.
    C.-H. Lin, S.-W. Chen, C.-H. Wang, J. Electron. Mater. 31, 907 (2002)CrossRefGoogle Scholar
  22. 22.
    S.C. Hsu, S.J. Wang, C.Y. Liu, J. Electron. Mater. 32, 1214 (2003)CrossRefGoogle Scholar
  23. 23.
    S.J. Wang, C.Y. Liu, J. Electron. Mater. 32, 1303 (2003)CrossRefGoogle Scholar
  24. 24.
    “IPMA” The Thermodynamic Databank for Interconnection and Packaging Materials (Helsinki University of Technology, Helsinki, 2006)Google Scholar
  25. 25.
    K. Zeng, V. Vuorinen, J.K. Kivilahti, IEEE T. Electron. Pa. M. 25, 162 (2002)CrossRefGoogle Scholar
  26. 26.
    M.O. Alam, Y.C. Chan, K.N. Tu, Chem. Mater. 15, 4340 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Yu, V. Vuorinen, J.K. Kivilahti, J. Electron. Mater. 36, 136 (2007)CrossRefGoogle Scholar
  28. 28.
    The SGTE databank for solutions and substances, Department of Materials Science and Engineering, The Royal Institute of Technology, Sewden, released 1992Google Scholar
  29. 29.
    J.-H. Shim, C.-S. Oh, B.-J. Lee, D.-N. Lee, Z. Metallkd. 87, 205 (1996)Google Scholar
  30. 30.
    H.S. Liu, J. Wang, Z.P. Jin, Calphad. 28, 363 (2004)CrossRefGoogle Scholar
  31. 31.
    K. Rönkä, F.J.J. van Loo, J.K. Kivilahti, Scripta Mater. 37, 1575 (1997)CrossRefGoogle Scholar
  32. 32.
    L.S. Darken and R.W. Gurry, Physical Chemistry of Metals (McGraw-Hill, 1953)Google Scholar
  33. 33.
    A.T. Dinsdale, Calphad 15, 317 (1991)CrossRefGoogle Scholar
  34. 34.
    F.J.J. van Loo, Prog. Solid State Ch. 20, 47 (1990)CrossRefGoogle Scholar
  35. 35.
    E.K. Ohriner, Welding Research Supplement, July 191 (1987)Google Scholar
  36. 36.
    S.-W. Chen, S.-H. Wu, S.-W. Lee, J. Electron. Mater. 32, 1188 (2003)CrossRefGoogle Scholar
  37. 37.
    G. Ghosh, Acta Metall. Mater. 49, 2609 (2002)Google Scholar
  38. 38.
    G. Ghosh, J. Electron. Mater. 33, 229 (2004)CrossRefGoogle Scholar
  39. 39.
    T.M. Korhonen, S.J. Hong, P. Su, and M.A. Korhonen, Proceedinds of the 2000 SMTA International Conference (Chicago, Illinois, September 24–28, 2000)Google Scholar
  40. 40.
    J. Miettinen, Calphad 27, 309 (2003)CrossRefGoogle Scholar
  41. 41.
    J.S. Lee Pak, K. Mukherjee, Mat. Sci. Eng. A Struct. A117, 167 (1989)CrossRefGoogle Scholar
  42. 42.
    H. Yu, V. Vuorinen, and J. K. Kivilahti, The Proceedings of Electronic Component and Technology Conference, IEEE (2006)Google Scholar
  43. 43.
    R. Gagliano, G. Ghosh, M. Fine, J. Electron. Mater. 31, 1195 (2002)CrossRefGoogle Scholar
  44. 44.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mat. Sci. Eng. R. R49, 1 (2005)CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • V. Vuorinen
    • 1
  • H. Yu
    • 1
  • T. Laurila
    • 1
  • J.K. Kivilahti
    • 1
  1. 1.Laboratory of Electronics Production TechnologyHelsinki University of TechnologyHelsinkiFinland

Personalised recommendations