Journal of Electronic Materials

, Volume 37, Issue 6, pp 792–805

Formation of Intermetallic Compounds Between Liquid Sn and Various CuNix Metallizations

Open Access


Interfacial reactions between liquid Sn and various Cu-Ni alloy metallizations as well as the subsequent phase transformations during the cooling were investigated with an emphasis on the microstructures of the reaction zones. It was found that the extent of the microstructurally complex reaction layer (during reflow at 240°C) does not depend linearly on the Ni content of the alloy metallization. On the contrary, when Cu is alloyed with Ni, the rate of thickness change of the total reaction layer first increases and reaches a maximum at a composition of about 10 at.% Ni. The reaction layer is composed of a relatively uniform continuous (Cu,Ni)6Sn5 reaction layer (a uniphase layer) next to the NiCu metallizations and is followed by the two-phase solidification structures between the single-phase layer and Sn matrix. The thickness of the two-phase layer, where the intermetallic tubes and fibers have grown from the continuous interfacial (Cu,Ni)6Sn5 layer, varies with the Ni-to-Cu ratio of the alloy metallization. In order to explain the formation mechanism of the reaction layers and their observed kinetics, the phase equilibria in the Sn-rich side of the SnCuNi system at 240°C were evaluated thermodynamically utilizing the available data, and the results of the Sn/CuxNi1−x diffusion couple experiments. With the help of the assessed data, one can also evaluate the minimum Cu content of Sn-(Ag)-Cu solder, at which (Ni,Cu)3Sn4 transforms into (Cu,Ni)6Sn5, as a function of temperature and the composition of the liquid solders.


Intermetallic formation soldering lead-free solidification kinetics metastable solubility reliability phase diagram 

Copyright information

© TMS 2008

Authors and Affiliations

  • V. Vuorinen
    • 1
  • H. Yu
    • 1
  • T. Laurila
    • 1
  • J.K. Kivilahti
    • 1
  1. 1.Laboratory of Electronics Production TechnologyHelsinki University of TechnologyHelsinkiFinland

Personalised recommendations