Advertisement

Journal of Electronic Materials

, Volume 37, Issue 7, pp 937–943 | Cite as

InGaAs/AlGaAs Quantum Dot Nanostructures for 980 nm Operation

  • G. TrevisiEmail author
  • P. Frigeri
  • M. Minelli
  • S. Franchi
Article

We studied the dependence of the photoluminescence emission energy of InGaAs/AlGaAs quantum dot (QD) structures grown by molecular beam epitaxy as a function of the Al and In content in barriers and QDs, respectively. We show that emissions are blue-shifted by increasing both the Al content in the 0 to 0.30 range and, unexpectedly, the In composition in the 0.4 to 0.7 range; we suggest that such results stem from significant changes in QD sizes, shapes, and composition profiles. This research led to the preparation of structures with efficient light emission in the 980 nm window of optoelectronic interest.

Keywords

Quantum dots molecular-beam epitaxy nanostructures 980-nm light emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work has been partially supported by the “SANDiE” Network of Excellence of EU, Contract No. NMP4-CT-2004-500101. The AFM characterization was carried out at CIM, University of Parma. The involvement of M. Belli in the early stages of the research is acknowledged.

References

  1. 1.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum dot heterostructures (Chichester, Wiley, 1999)Google Scholar
  2. 2.
    P. Bhattacharya, S. Ghosh, A.D. Stiff-Roberts, Annu. Rev. Mater. Res. 34, 1 (2004)CrossRefGoogle Scholar
  3. 3.
    D. Bimberg, J. Phys. D Appl. Phys. 38, 2055 (2005)CrossRefGoogle Scholar
  4. 4.
    R. Leon, S. Fafard, D. Leonard, J.L. Merz, P.M. Petroff, Appl. Phys. Lett. 67, 521 (1995)CrossRefGoogle Scholar
  5. 5.
    A. Polimeni, A. Patanè, M. Henini, L. Eaves, P.C. Main, Phys. Rev. B 59, 5064 (1999)CrossRefGoogle Scholar
  6. 6.
    Y.S. Kim, U.H. Lee, D. Lee, S.J. Rhee, Y.A. Leem, H.S. Ko, D.H. Kim, J.C. Woo, J. Appl. Phys. 87, 241 (2000)CrossRefGoogle Scholar
  7. 7.
    A.E. Zhukov, A.Yu. Egorov, A.R. Kovsh, V.M. Ustinov, N.N. Ledentsov, M.V. Maksimov, A.F. Tsatsulnikov, S.V. Zaitsev, N.Yu. Gordeev, P.S. Kop’ev, Zh.I. Alferov, D. Bimberg, Semiconductors 31, 411 (1997)CrossRefGoogle Scholar
  8. 8.
    A.E. Zhukov, A.R. Kovsh, V.M. Ustinov, A.Yu. Egorov, N.N. Ledentsov, A.F. Tsatsul’nikov, M.V. Maksimov, S.V. Zaitsev, Yu.M. Shernyakov, A.V. Lunev, P.S. Kop’ev, Zh.I. Alferov, D. Bimberg, Semiconductors 33, 1013 (1999)CrossRefGoogle Scholar
  9. 9.
    A.E. Zhukov, A.R. Kovsh, V.M. Ustinov, A.Yu. Egorov, N.N. Ledentsov, A.F. Tsatsul’nikov, M.V. Maximov, Yu.M. Shernyakov, V.I. Kopchatov, A.V. Lunev, P.S. Kop’ev, D. Bimberg, Zh.I. Alferov, Semicond. Sci. Tech. 14, 118 (1999)CrossRefGoogle Scholar
  10. 10.
    F. Klopf, J.P. Reithmaier, A. Forchel, J. Cryst. Growth 227–228, 1151 (2001)CrossRefGoogle Scholar
  11. 11.
    P. Ballet, J.B. Smathers, H. Yang, C.L. Workman, G.J. Salamo, J. Appl. Phys. 90, 481 (2001)CrossRefGoogle Scholar
  12. 12.
    P. Offermans, P.M. Koenraad, J.H. Wolter, K. Pierz, M. Roy, P.A. Maksym, Physica E 26, 236 (2005)CrossRefGoogle Scholar
  13. 13.
    N.H. Kim, P. Ramamurthy, L.J. Mawst, T.F. Kuech, P. Modak, T.J. Goodnough, D.V. Forbes, M. Kanskar, J. Appl. Phys. 97, 093518 (2005)CrossRefGoogle Scholar
  14. 14.
    X. Wallart, C. Priester, Phys. Rev. B 68, 235314 (2003)CrossRefGoogle Scholar
  15. 15.
    K. Mahalingham, Y. Nakamura, N. Otsuka, H.Y. Lee, M.J. Hafich, G.Y. Robinson, J. Electron. Mater. 21, 129 (1992)CrossRefGoogle Scholar
  16. 16.
    F. Briones and A. Ruiz, J. Cryst. Growth 111, 194 (1991)Google Scholar
  17. 17.
    P. Altieri, S. Sanguinetti, M. Gurioli, E. Grilli, M. Guzzi, P. Frigeri, S. Franchi, G. Trevisi, Mat. Sci. Eng. B 88, 234 (2002)CrossRefGoogle Scholar
  18. 18.
    D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, S. Franchi, J. Appl. Phys. 94, 6513 (2003)CrossRefGoogle Scholar
  19. 19.
    L. Seravalli, M. Minelli, P. Frigeri, P. Allegri, V. Avanzini, S. Franchi, Appl. Phys. Lett. 82, 2341 (2003)CrossRefGoogle Scholar
  20. 20.
    L. Seravalli, P. Frigeri, M. Minelli, P. Allegri, V. Avanzini, S. Franchi, Appl. Phys. Lett. 87, 063101 (2005)CrossRefGoogle Scholar
  21. 21.
    J. Ibáñez, R. Cuscó, L. Artús, M. Henini, A. Patanè, L. Eaves, J. Appl. Phys. 88, 141905 (2006)Google Scholar
  22. 22.
    S. Mazzucato, D. Nardin, M. Capizzi, A. Polimeni, A. Frova, L. Seravalli, S. Franchi, Mat. Sci. Eng. C 25, 830. (2005)CrossRefGoogle Scholar
  23. 23.
    S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, S. Franchi, Phys. Rev. B 60, 8276 (1999)CrossRefGoogle Scholar
  24. 24.
    E.C. Le Ru, J. Fack, R. Murray, Phys. Rev. B 67, 245318 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, V. Avanzini, J. Cryst. Growth 175/176, 771 (1997)CrossRefGoogle Scholar
  26. 26.
    K. Kamath, P. Bhattacharya, J. Phillips, J. Cryst. Growth 175/176, 720 (1997)CrossRefGoogle Scholar
  27. 27.
    H. Li, Q. Zhuang, Z. Wang, T. Daniels-Race, J. Appl. Phys. 87, 188 (2000)CrossRefGoogle Scholar
  28. 28.
    D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P Denbaars, P.M. Petroff, Appl. Phys. Lett. 63, 3203 (1993)CrossRefGoogle Scholar
  29. 29.
    B.G. Orr, D. Kessler, C.W. Snyder, L. Sander, Europhys. Lett. 19, 33 (1992)CrossRefGoogle Scholar
  30. 30.
    L. Seravalli, M. Minelli, P. Frigeri, S. Franchi, G. Guizzetti, M. Patrini, T. Ciabattoni, M. Geddo, J. Appl. Phys. 101, 024313 (2007)CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • G. Trevisi
    • 1
    Email author
  • P. Frigeri
    • 1
  • M. Minelli
    • 1
  • S. Franchi
    • 1
  1. 1.CNR—IMEM InstituteParmaItaly

Personalised recommendations