Journal of Electronic Materials

, Volume 37, Issue 3, pp 264–278 | Cite as

Experimental Study of Au-Pt-Sn Phase Equilibria and Thermodynamic Assessment of the Au-Pt and Au-Pt-Sn Systems

  • Vincent Grolier
  • Rainer Schmid-Fetzer


The Calphad method has been employed to generate a consistent thermodynamic description of the Au-Pt-Sn system, including a thermodynamic evaluation of the Au-Pt system, incorporating all phase equilibria and thermodynamic data. Special attention has been given to assign reasonable values to the parameters in view of the rather wide range of freedom for optimization. Our own experimental analyses of the Au-Pt-Sn system were carried out with differential thermal analysis and microstructural analysis using scanning electron microscopy with energy-dispersive X-ray microanalysis. The proposed thermodynamic descriptions are found to describe properly the binary Au-Pt and ternary Au-Pt-Sn phase equilibria.


Phase diagram Calphad thermodynamic modeling Au-Pt Au-Pt-Sn lead-free solder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been supported by Osram Opto Semiconductors GmbH, Regensburg. Special thanks are due to Dr. A. Plößl for his encouragement of this study.


  1. 1.
  2. 2.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mat. Sci. Eng., R49 1 (2005)Google Scholar
  3. 3.
    O. Wada, T. Kumai, Appl. Phys. Lett. 58, 9 (1991)CrossRefGoogle Scholar
  4. 4.
    J.-H. Park, J.-H. Lee, Y.-H. Lee, Y.-S. Kim, J. Electron. Mater. 31(11) 1175 (2002)CrossRefGoogle Scholar
  5. 5.
    S. Anhöck, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, and H. Reichl, 1998 IEEE/CPMT Berlin Int’l Electronics Manufacturing Technology Symposium, 156 (1998)Google Scholar
  6. 6.
    A.N. Torgersen, L. Offernes, A. Kjekshus, A. Olsen, J. Alloys Compd. 314 92 (2001)CrossRefGoogle Scholar
  7. 7.
    V. Grolier and R. Schmid-Fetzer, Landolt-Boernstein, Numerical Data and Functional Relationships in Science and Technology (New Series). Group IV: Physical Chemistry, ed. W. Martiensen, Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodynamic Data, Vol. 11B, ed. G.␣Effenberg and S. Ilyenko (Berlin, Heidelberg: Springer-Verlag, 309, 2006)Google Scholar
  8. 8.
    J.F. Bates, A.G. Knaption, Int. Mater. Rev., 215, 39 (1977)Google Scholar
  9. 9.
    B. Kempf, P. Spencer, J. Haußelt, Z. Metallkd. 86(9), 603 (1995)Google Scholar
  10. 10.
    B. Kempf, S. Schmauder, Gold Bull. 31(2), 51 (1998)Google Scholar
  11. 11.
    L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Materials, Academic, New York (1970)Google Scholar
  12. 12.
    V. Grolier and R. Schmid-Fetzer, Int. J. Mater. Res. (formerly Z. Metallkd.) 98(9), 797 (2007)Google Scholar
  13. 13.
    V. Grolier and R. Schmid-Fetzer, J. Alloy Compd. (2006),  doi:10.1016/j.jallcom.2006.11.027 (in press)
  14. 14.
    F. Doerinckel, Z. Anorg. Chem., 54, 333 (1907)CrossRefGoogle Scholar
  15. 15.
    A.T. Grigorjew, Z. Anorg. Allg. Chem., 178, 97 (1929)CrossRefGoogle Scholar
  16. 16.
    G. Grube, A. Schneider, and U. Esch, Heraeus Festschrift 20 (1951)Google Scholar
  17. 17.
    A.S. Darling, R.A. Mintern, and J.C. Chaston, J. I. Met. 81, 125 (1952–1953)Google Scholar
  18. 18.
    C.H. Johansson, J.O. Linde, Ann. Phys., 5(6), 762 (1930)CrossRefGoogle Scholar
  19. 19.
    W. Stenzel and J. Weerts, Siebert-Festschrift 300 (1931)Google Scholar
  20. 20.
    Yu.I. Vesnin, Yu.V. Shubin, J. Less-Common Met., 142, 213 (1988)CrossRefGoogle Scholar
  21. 21.
    C.G. Wictorin, Ann. Phys. 5(33), 509 (1938)CrossRefGoogle Scholar
  22. 22.
    C.G. Wictorin, PhD Thesis, Verlag Ivan Hoeggströms, Stockholm (1947)Google Scholar
  23. 23.
    A. Münster, K. Sagel, Z. Phys. Chem. Neue Fol. 23, 415 (1960)Google Scholar
  24. 24.
    R.W. Jones, F.E. Stafford, D.H. Whitmore, Metall. Trans. 1, 403 (1970)Google Scholar
  25. 25.
    O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry 6th ed., Pergamon, Oxford, (1993)Google Scholar
  26. 26.
    F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals, vol.1, Noth-Holland, Amsterdam (1988)Google Scholar
  27. 27.
    S. Curtarolo, D. Morgan, G. Ceder, Calphad, 29(3), 163 (2005)CrossRefGoogle Scholar
  28. 28.
    H. Okamoto and T.B. Massalski, Noble Metal Alloys, ed. T.B. Massalski, W.B. Pearson, L.H. Benett, and Y.A. Chang (AIME, 265, 1986)Google Scholar
  29. 29.
    A.T. Dinsdale, Calphad 15(4), 317 (1991)CrossRefGoogle Scholar
  30. 30.
    A.N. Torgersen, H. Bros, R. Castanet, A. Kjekshus, J. Alloy. Compd., 307, 167 (2000)CrossRefGoogle Scholar
  31. 31.
    H.S. Liu, C.L. Liu, K. Ishida, Z.P. Jin, J. Electron. Mater. 32, 11 (2003)Google Scholar
  32. 32.
    R. Schmid, Y.A. Chang, Calphad 9(4), 363 (1985)CrossRefGoogle Scholar
  33. 33.
    M. Hillert, L.I. Staffansson, Acta Chem. Scand. 24, 3618 (1970)CrossRefGoogle Scholar
  34. 34.
    Hultgren and coll., ASM, 320 (1973)Google Scholar
  35. 35.
    T.B. Massalski, (ed.), Binary Alloy Phase Diagrams, 2nd ed. ASM International, Metals Park, Ohio (1990)Google Scholar
  36. 36.
    C.H. Johansson, O. Hagsten, Ann. Phys., 5, 28 (1937)Google Scholar
  37. 37.
    C.H.P. Lupis, J.F. Elliot, Acta Metall. 15, 265 (1967)CrossRefGoogle Scholar
  38. 38.
    O. Kubaschewski, High Temp.-High Pres. 13, 435 (1981)Google Scholar
  39. 39.
    G. Kaptay, Calphad 28, 115 (2004)CrossRefGoogle Scholar
  40. 40.
    S. Morioka, M. Hasebe, J. Phas. Equilib. Diff. 20(3), 244 (1999)CrossRefGoogle Scholar
  41. 41.
    T. Tanaka, N.A. Gokcen, Z.-I. Morita, T. Iida, Z. Metallkd. 84(3), 192 (1993)Google Scholar
  42. 42.
    T. Tanaka, N.A. Gokcen, K.C. Hari Kumar, S. Hara, Z.-I. Morita, Z. Metallkd. 87(10), 779 (1996)Google Scholar
  43. 43.
    A. Janz, R. Schmid-Fetzer, Calphad 29, 37 (2005)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  1. 1.Institute of MetallurgyClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations