Journal of Electronic Materials

, Volume 37, Issue 3, pp 361–367 | Cite as

Wet Etching Study of La0.67(Sr0.5Ca0.5)0.33MnO3 Films on Silicon Substrates

  • Joo-Hyung Kim
  • Alexander M. Grishin
  • Velislava Angelova Ignatova
Article

Wet etching of colossal magnetoresistive (CMR) perovskite La0.67(Sr0.5 Ca0.5)0.33MnO3 (LSCMO) films on Bi4Ti3O12/CeO2/yttrium-stabilized zirconia (YSZ)-buffered Si substrates was investigated using potassium hydroxide (KOH) and buffered hydrofluoric acid (BHF) solutions. X-ray diffraction (XRD) and scanning spreading resistance microscopy (SSRM) measurements revealed that the morphological roughness of the LSCMO films increases, while the electrical resistance roughness decreases, with increasing KOH etching time. The LSCMO films are highly chemically resistant to KOH solution; however, in the case of BHF etching, an etch rate of 22 nm/min was obtained with high selectivity over a photoresist mask.

Keywords

Etch rate manganite selectivity KOH BHF SSRM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.-M. Haghiri-Gosnet, J.-P. Renard, J. Phys. D: Appl. Phys. 36, R127 (2003). CrossRefGoogle Scholar
  2. 2.
    S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, Science 276(11), 238 (1997)CrossRefGoogle Scholar
  3. 3.
    A. Rogalski, Prog. Quant. Electron. 27, 59 (2003)CrossRefGoogle Scholar
  4. 4.
    J.-H. Kim, S.I. Khartsev, and A.M. Grishin, Appl. Phys. Lett. 82, 4295 (2003); J.-H. Kim and A.M. Grishin, Appl. Phys. Lett. 87, 033502 (2005)Google Scholar
  5. 5.
    H. Seidel, L. Cseprege, A. Heuberger, H. Baumgarel, J. Electrochem. Soc. 137, 3626 (1990)CrossRefGoogle Scholar
  6. 6.
    K.R. Williams, K. Gupta, M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003)CrossRefGoogle Scholar
  7. 7.
    D.P. Butler, Z. Çelik-Butler, A. Jahanzeb, J.E. Gray, C.M. Travers, J. Appl. Phys. 84, 1680 (1998)CrossRefGoogle Scholar
  8. 8.
    P.C. Hoyle, J.R.A. Cleaver, H. Ahmed, Sens. Actuators A 50, 31 (1995)CrossRefGoogle Scholar
  9. 9.
    P. Eliáš, V. Cambel, S. Hasenöhrl, P. Hudek, J. Novák, Mater. Sci. Eng. B 66, 15 (1999)CrossRefGoogle Scholar
  10. 10.
    B. Khamsehpour, C.D.W. Wilkinson, J.N. Chapman, Appl. Phys. Lett. 67, 3194 (1995)CrossRefGoogle Scholar
  11. 11.
    F.C.M.J.M. van Delft, J. Magn. Magn. Mater. 140–144, 2203 (1995)Google Scholar
  12. 12.
    M.A. Seigler, Appl. Phys. Lett. 80, 820 (2002)CrossRefGoogle Scholar
  13. 13.
    A.M. Dhote, R. Shreekala, S.I. Patil, S.B. Ogale, T. Venkatesan, C.M. Williams, Appl. Phys. Lett. 67, 3644 (1995)CrossRefGoogle Scholar
  14. 14.
    M. Naoe, K. Hamaya, N. Fujuwara, T. Taniyama, Y. Kitamoto, Y. Yamazaki, J. Magn. Magn. Mater. 235, 223 (2001)CrossRefGoogle Scholar
  15. 15.
    T. Ono, A. Kogusu, S. Morimoto, S. Nasu, A. Masuno, T. Terashima, M. Takano, Appl. Phys. Lett. 84, 2370 (2004)CrossRefGoogle Scholar
  16. 16.
    K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, Sens. Actuators A 64, 87 (1998)CrossRefGoogle Scholar
  17. 17.
    P. De Wolf, M. Geva, T. Hantschel, W. Vandervorst, and R.B. Bylsma, Appl. Phys. Lett. 73, 2155 (1998)Google Scholar
  18. 18.
    K. Maknys, O. Douherter, S. Anand, Appl. Phys. Lett. 83, 2184 (2003)CrossRefGoogle Scholar
  19. 19.
    “Scanning Spreading Resistance Microscopy”, Support Note No. 294. Rev. A, Digital Instruments (2000)Google Scholar
  20. 20.
    R.P. Lu, K.L. Kavanagh, St. J. Dixon-Warren, A. Kuhl, A.J. SpringThorpe, E. Griswold, G. Hillier, I. Calder, R. Ares, and R. Streater, J. Vac. Sci. Technol. B 19, 1662 (2001)Google Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Joo-Hyung Kim
    • 1
    • 2
  • Alexander M. Grishin
    • 2
  • Velislava Angelova Ignatova
    • 1
  1. 1.Fraunhofer Institute, Center of Nanoelectronic Technologies (CNT)DresdenGermany
  2. 2.Department of Microelectronics and Information TechnologyRoyal Institute of Technology (KTH) Stockholm-KistaSweden

Personalised recommendations