Journal of Electronic Materials

, Volume 37, Issue 5, pp 546–549 | Cite as

Influence of Mg Doping on the Morphological, Optical, and Structural Properties of InGaN/GaN Multiple Quantum Wells

  • Z. Chen
  • N. Fichtenbaum
  • D. Brown
  • S. Keller
  • U.K. Mishra
  • S.P. Denbaars
  • S. Nakamura
Open Access
Article

In this report, the influence of magnesium doping on the characteristics of InGaN/GaN multiple quantum wells (MQWs) was investigated by means of atomic force microscopy (AFM), photoluminescence (PL), and X-ray diffraction (XRD). Five-period InGaN/GaN MQWs with different magnesium doping levels were grown by metalorganic chemical vapor deposition. The AFM measurements indicated that magnesium doping led to a smoother surface morphology. The V-defect density was observed to decrease with increasing magnesium doping concentration from ∼109 cm−2 (no doping) to ∼106 cm−2 (Cp2Mg: 0.04 sccm) and further to 0 (Cp2 Mg: 0.2 sccm). The PL measurements showed that magnesium doping resulted in stronger emission, which can be attributed to the screening of the polarization-induced band bending. XRD revealed that magnesium doping had no measurable effect on the indium composition and growth rate of the MQWs. These results suggest that magnesium doping in MQWs might improve the optical properties of GaN photonic devices.

Keywords

InGaN multiple quantum wells (MQWs) V-defects metalorganic chemical vapor deposition (MOCVD) photoluminescence (PL) atomic force microscopy (AFM) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S.Y. Wang, Appl. Phys. Lett. 72, 710 (1998)CrossRefGoogle Scholar
  2. 2.
    P. Vennegues, B. Beaumont, M. Vaille, and P. Gibart, Appl. Phys. Lett. 70, 2434 (1997)CrossRefGoogle Scholar
  3. 3.
    X.H. Wu, C.R. Elsass, A. Abare, M. Mack, S. Keller, P.M. Petroff, S.P. DenBaars, and J.S. Speck, Appl. Phys. Lett. 72, 692 (1998)CrossRefGoogle Scholar
  4. 4.
    D. Cherns, S.J. Henley, and F.A. Ponce, Appl. Phys. Lett. 78, 2691 (2001)CrossRefGoogle Scholar
  5. 5.
    P.A. Crowell, D.K. Young, S. Keller, E.L. Hu, and D.D. Awschalom, Appl. Phys. Lett. 72, 927 (1998)CrossRefGoogle Scholar
  6. 6.
    X.A. Cao, E.B. Stokes, P.M. Sandvik, S.F. LeBoeuf, J. Kretchmer, and D. Walker, IEEE Elec. Dev. Lett. 23, 535 (2002)CrossRefGoogle Scholar
  7. 7.
    X.A. Cao, E.B. Stokes, S.F. LeBoeuf, P.M. Sandvik, J. Kretchmer, and D. Walker, Mat. Res. Soc. Symp. Proc. 722, K2.3.1 (2002)Google Scholar
  8. 8.
    N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, Appl. Phys. Lett. 77, 1274 (2000)CrossRefGoogle Scholar
  9. 9.
    H.K. Cho, J.Y. Lee, G.M. Yang, and C.S. Kim, Appl. Phys. Lett. 79, 215 (2001)CrossRefGoogle Scholar
  10. 10.
    Z. Lillental-Weber, Y. Chen, S. Ruvimov, and J. Washburn, Phys. Rev. Lett. 79, 2835 (1997)CrossRefGoogle Scholar
  11. 11.
    J.E. Northrup, and J. Neugebauer, Phys. Rev. B 60, R8473 (1999)CrossRefGoogle Scholar
  12. 12.
    S. Haffouz, B. Beaumont, and P. Gibart, MRS Internet J. Nitride Semicond. Res. 3, 8 (1998)Google Scholar
  13. 13.
    T. Detchprohm, S. Sano, S. Mochizuki, S. Kamiyama, H. Amano, and I. Akasaki, Phys. Stat. Sol.(a). 188, 799 (2001)CrossRefGoogle Scholar
  14. 14.
    B. Beaumont, S. Haffouz, and P. Gibart, Appl. Phys. Lett. 72, 921 (1998)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Z. Chen
    • 1
    • 2
  • N. Fichtenbaum
    • 1
  • D. Brown
    • 1
  • S. Keller
    • 1
  • U.K. Mishra
    • 1
  • S.P. Denbaars
    • 2
  • S. Nakamura
    • 2
  1. 1.Electrical and Computer Engineering DepartmentUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations