Journal of Electronic Materials

, Volume 37, Issue 1, pp 102–109 | Cite as

Mechanical Size Effects in Miniaturized Lead-Free Solder Joints

  • Peter Zimprich
  • Usman Saeed
  • Agnieszka Betzwar-Kotas
  • Brigitte Weiss
  • Herbert Ipser
Open Access

Future reliability and quality control of microelectronics will greatly depend on a detailed understanding of the complex mechanical and thermal properties of miniaturized lead-free solder joints. Therefore, the question of the occurrence of size effects or dimensionally induced constraints, which could change the mechanical properties of solder joints in small dimensions dramatically, has become the focus of investigation. In this study we investigated the influence of decreasing gap size on the tensile, shear, and stress relaxation behavior of solder joints to investigate the occurrence of size effects and dimensionally induced constraints, which could change the mechanical properties of solder joints significantly in micrometer dimensions. Residual stresses might remain in the solder joints during high-temperature dwell in thermomechanical fatigue. Model solder joints (Sn3.5Ag/Cu) of rectangular shape with gap sizes varying between 25 μm and 850 μm were prepared by reflow soldering to achieve near-industrial soldering processing. Scanning electron microscopy was used for analyzing the microstructure and the complex modes of fracture and crack propagation in the solder interconnect. The observed tensile behavior can be interpreted in terms of an existing theory for brazed joints to complement finite-element analysis that is usually used for a description of these phenomena.


Lead-free solder joints mechanical size effects mechanical constraints tensile test shear test stress relaxation reliability 



This research is a contribution to the European COST Action 531. Financial support from the Austrian Science Foundation (FWF) under Project No. P-17346 is gratefully acknowledged. The authors thank D. Vogel and A. Gollhardt of the Institute for Microintegration and Reliability (IZM Berlin) for their support using the SEM for fracture monitoring, data interpretation, and helpful discussions; they also thank Ms. A. Ziering for the preparation of the solder joints.


  1. 1.
    W. Plumbridge, R. Matela, A. Westwater, Structural Integrity and Reliability in Electronics. (Kluwer Academic Publishers, London, 2003)Google Scholar
  2. 2.
    N. Bonda, I. Noyan, IEEE Trans. Comp. Pack Manufact. Technol. 19A, 208 (1996)CrossRefGoogle Scholar
  3. 3.
    H. Lee, H. Lin, C. Lee, P. Chen, Mater. Sci. Eng. A 407, 36 (2005)CrossRefGoogle Scholar
  4. 4.
    W. Plumbridge, Solder. Surf. Mount Technol. 16(2), 13 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Lee, M. Chen, Mater. Sci. Eng. A 333, 24 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Lee, M. Chen, H. Jao, T. Liao, Mater. Sci. Eng. A 358, 134 (2003)CrossRefGoogle Scholar
  7. 7.
    K. Prakash, T. Sritharan, Mater. Sci. Eng. A 379, 277 (2004)CrossRefGoogle Scholar
  8. 8.
    A. Antoniou, A.F. Bastawros, J. Mater. Res. 18(10), 2304 (2003)CrossRefGoogle Scholar
  9. 9.
    Y. Shen, N. Chawla, E. Ege, X. Deng, Acta Mater. 53, 2633 (2005)CrossRefGoogle Scholar
  10. 10.
    S.G. Jadhav, T.R. Bieler, K.N. Subramanian, J.P. Lucas, J. Electron. Mater. 30(9), 1197 (2001)CrossRefGoogle Scholar
  11. 11.
    K.N. Subramanian, J. Electron. Mater. 34(10), 1313 (2005)CrossRefGoogle Scholar
  12. 12.
    H. Rhee, K.N. Subramanian, J. Electron. Mater. 32(11), 1310 (2003)CrossRefGoogle Scholar
  13. 13.
    W. Nix, Met. Trans. A 20, 2217 (1989)CrossRefGoogle Scholar
  14. 14.
    E. Arzt, Acta Mater. 46, 5611 (1998)CrossRefGoogle Scholar
  15. 15.
    A. Skipor, S. Harren, J. Botsis, J. Eng. Frac. Mech. 52, 647 (1995)CrossRefGoogle Scholar
  16. 16.
    J.P. Ranieri, F.S. Lauten, D.H. Avery, J. Electron. Mater. 24(10), 1419 (1995)CrossRefGoogle Scholar
  17. 17.
    P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, and H. Ipser, Proc. of the 16th European Conference of Fracture (ECF16), ed. E.E. Gdoutos (Springer, 2006), p. 645Google Scholar
  18. 18.
    J. Cugnoni, J. Botsis, J. Janczak-Rusch, Adv. Eng. Mat. 8(3), 184 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Saxton, A. West, C. Barrett, Met. Trans. 2, 999 (1971)CrossRefGoogle Scholar
  20. 20.
    A. West, H. Saxton, C. Barrett, Met. Trans. 2, 1009 (1971)CrossRefGoogle Scholar
  21. 21.
    H. Saxton, A. West, C. Barrett, Met. Trans. 2, 1019 (1971)CrossRefGoogle Scholar
  22. 22.
    E. Orowan, J. Nye, W. Cairns, MOS Arm. Res. Dept. Rept. 16, 35 (1945)Google Scholar
  23. 23.
    T. Courtney, Mechanical Behavior of Materials (McGraw-Hill, 1990), p. 201Google Scholar
  24. 24.
    D. Vogel, R. Kühnert, M. Dost, B. Michel, Trans. ASME J. Electr. Packaging. 124, 345 (2002)CrossRefGoogle Scholar
  25. 25.
    M. Anwander, B. Zagar, B. Weiss, H. Weiss, Exp. Mech. 1, 40 (2000)Google Scholar
  26. 26.
    B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, B. Zagar, Sens. Actuat. A 99, 172 (2000)CrossRefGoogle Scholar
  27. 27.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000)CrossRefGoogle Scholar
  28. 28.
    D. Frear, P. Vianco, Met. Mater. Trans. A 25, 1509 (1994)CrossRefGoogle Scholar
  29. 29.
    H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, M. Fine, J. Electron. Mater. 26(7), 783 (1997)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Peter Zimprich
    • 1
  • Usman Saeed
    • 2
  • Agnieszka Betzwar-Kotas
    • 1
  • Brigitte Weiss
    • 1
  • Herbert Ipser
    • 2
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Department of Inorganic Chemistry-Materials ChemistryUniversity of ViennaViennaAustria

Personalised recommendations