Journal of Electronic Materials

, Volume 37, Issue 1, pp 17–22 | Cite as

Tin Whisker Growth Induced by High Electron Current Density

  • Y. W. Lin
  • Yi-Shao Lai
  • Y. L. Lin
  • Chun-Te Tu
  • C. R. KaoEmail author

The effect of electric current on the tin whisker growth on Sn stripes was studied. The Sn stripes, 1 μm in thickness, were patterned on silicon wafers. The design of the Sn stripes allowed the simultaneous study of the effect of current crowding and current density. Current stressing was performed in ovens set at 30, 50, or 70°C, and the current density used ranged from 4.5 × 104 A/cm2 to 3.6 × 105 A/cm2. It was found that the stress induced by the electric current caused the formation of many Sn whiskers. A higher current density caused more Sn whiskers to form. Of the three temperatures studied, 50°C was the most favorable one for the formation of the Sn whiskers. In addition, the current-crowding effect also influenced whisker growth.

Key words

Tin whisker electromigration current crowding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, G.T.T. Sheng, Y.Y. Bong, and L. Nguyen, 52nd Electron. Comp. & Tech. Conf., pp. 628–633, May 28–31, San Diego, CA (2002).Google Scholar
  2. 2.
    P. Bush, G. Jones, and I. Boguslavsky, NEMI Workshop on Tin Whiskers, APEX 2003, April 1, Anaheim, CA (2003).Google Scholar
  3. 3.
    H.L. Cobb, Monthly Rev. Am. Electroplaters Soc. 33, 28 (1946).Google Scholar
  4. 4.
    S.E. Koonce and S.M. Arnold, J. Appl. Phys. 24, 365 (1954).CrossRefGoogle Scholar
  5. 5.
    R.M. Fisher, L.S. Darken, and K.G. Carroll, Acta Metall. 2, 368 (1954).CrossRefGoogle Scholar
  6. 6.
    W.C. Ellis, D.F. Gibbons, and R.C. Treuting, Growth and Perfection of Crystals, ed. R. H. Doremus, B. W. Roberts, and D. Turnbull (New York: Wiley, 1958), pp. 102–120.Google Scholar
  7. 7.
    U. Lindborg, Metall. Trans. A 6A, 1581 (1975).Google Scholar
  8. 8.
    K.N. Tu, Phys. Rev. B: Condens. Matter Mater. Phys. 49, 2030 (1994).Google Scholar
  9. 9.
    B.Z. Lee and D.N. Lee, Acta Metall., 46,3701 (1998).Google Scholar
  10. 10.
    C. Xu, Y. Zhang, C. Fan, and J.A. Abys, CircuiTree, 15, . 94 (2002).Google Scholar
  11. 11.
    G.T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong, and L. Nguyen, J. Appl. Phys. 92, 64 (2002).CrossRefGoogle Scholar
  12. 12.
    K.N. Tu and J.C.M. Li, Mater. Sci. Eng., A, 409, 131 (2005).CrossRefGoogle Scholar
  13. 13.
    S.H. Liu, C. Chen, and P.C. Liu, T. Chou, J. Appl. Phys., 95, 7742 (2004).CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Y. W. Lin
    • 1
  • Yi-Shao Lai
    • 2
  • Y. L. Lin
    • 3
  • Chun-Te Tu
    • 4
  • C. R. Kao
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Advanced Semiconductor Engineering, Inc.KaohsiungTaiwan
  3. 3.Department of Chemical & Materials EngineeringNational Central UniversityJhongliTaiwan
  4. 4.Henkel Accurus Scientific Co., Ltd.TainanTaiwan

Personalised recommendations