Journal of Electronic Materials

, Volume 36, Issue 10, pp 1372–1377 | Cite as

Current-Induced Phase Partitioning in Eutectic Indium-Tin Pb-Free Solder Interconnect

Open Access
Article

Structural changes from high-density electric currents were examined in a eutectic In-Sn/Cu interconnect. Under electrical loading, Sn and In migrated in opposite directions, creating a partition of the Sn- and In-rich phases between the anode and the cathode. At the anode, a net gain of Sn atoms resulted in the formation of massive, columnar hillocks on the surface, but a net loss of In led to dissolution and disappearance of the In-rich intermetallic layer. At the cathode, the exodus of Sn left valleys adjacent to the In-rich regions on the surface, while the amount of the In-rich phase grew, due to the net influx of In at the expense of the In-rich intermetallic layer.

Key words

In-Sn solder electromigration current stressing hillocks interface 

Notes

ACKNOWLEDGEMENTS

Support for this study was provided by the Chinese Natural Sciences Foundation, grant # 50228101, and the National Basic Research Program of China, grant # 2004CB619306. The authors also owe special thanks to Dr. Warke, Q.L. Yang and others in the Microelectronics Laboratory at IMR for their assistance.

REFERENCES

  1. 1.
    R. Kubiak, M. Wolcyrz, and W. Zacharko, J. Less-Common Met. 65, 263 (1979).CrossRefGoogle Scholar
  2. 2.
    J.W. Morris, J.L. Goldstein Freer, and Z. Mei, JOM 45, 25 (1993).Google Scholar
  3. 3.
    Z. Mei and J.W. Morris Jr., J. Electron. Mater. 21, 401 (1992).CrossRefGoogle Scholar
  4. 4.
    J.L. Freer and J.W. Morris Jr., J. Electron. Mater. 21, 647 (1992).CrossRefGoogle Scholar
  5. 5.
    M. Abtew M and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).CrossRefGoogle Scholar
  6. 6.
    C.J. Thwaites, Atlas of Microstructures of Industrial Alloys, in The Metals Handbook, ed. R.F. Mehl (The American Society for Metals: Metals Park, 1972), pp. 317–320.Google Scholar
  7. 7.
    S.S. Wang, Y.H. Tseng Y.H., and T.H. Chuang T.H., J. Electron. Mater. 35, 165 (2006).CrossRefGoogle Scholar
  8. 8.
    X. Liu, R.W. Davis, L.C. Hughes, M.H. Rasmussen, R. Mhat, and C.-E. Zah, J. Appl. Phys. 100, 1 (2006).CrossRefGoogle Scholar
  9. 9.
    Q.L. Yang and J.K. Shang, J. Electron. Mater. 34, 1363 (2005).CrossRefGoogle Scholar
  10. 10.
    H. Ye, C. Basaran, and D.C. Hopkins, Appl. Phys. Lett. 82, 1045 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Sigelko, S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 28, 1184 (1999).CrossRefGoogle Scholar
  12. 12.
    H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).CrossRefGoogle Scholar
  13. 13.
    K.V. Reddy, and J.J.B. Prasad, J. Appl. Phys., 55, 1546 (1984).CrossRefGoogle Scholar
  14. 14.
    S.G. Epstein, in Liquid Metals: Chemistry and Physics, Ed. S.Z. Beer, Marcel Dekker, New York, pp. 537–584 (1972).Google Scholar
  15. 15.
    M. Komiyama, H. Tsukamoto, T. Matsuda, and Y. Ogino, J. Mater. Sci. Lett. 5, 673 (1986).CrossRefGoogle Scholar
  16. 16.
    K.N. Tu, J. Appl. Phys. 94, 5451 (2003).CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metals ResearchCASShenyangChina
  2. 2.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations