Journal of Electronic Materials

, Volume 36, Issue 11, pp 1415–1428 | Cite as

Phase Equilibria in the Ag-Ni-Sn System: Isothermal Sections

  • Clemens Schmetterer
  • Hans Flandorfer
  • Klaus W. Richter
  • Herbert Ipser
Open Access
Article

The ternary system Ag-Ni-Sn is one of the constituents of the quaternary system Ag-Cu-Ni-Sn, which is of interest for the investigation of the interactions of Ag-Cu-Sn solder alloys with Ni as a substrate. Until now, only limited research has been done on the Ag-Ni-Sn system, especially in the (Ag,Ni)-rich part, most probably due to experimental difficulties caused by the monotectic reaction in the Ag-Ni binary system, which extends far into the ternary. In the present work a comprehensive study of the phase equilibria in four isothermal sections of the Ag-Ni-Sn system at 200, 450, 700, and 1050°C was carried out employing X-ray diffraction (XRD), metallography, and electron probe microanalysis (EPMA). No evidence for the existence of a ternary phase was obtained, and, in most cases, ternary solubilities of the binary phases were found to be insignificant. The liquid miscibility gap at high temperatures caused a number of serious experimental problems during sample preparation.

Key words

Lead-free soldering phase diagram Ag-Ni-Sn phase equilibria isothermal section 

Notes

ACKNOWLEDGEMENTS

This research is a contribution to the European COST Action 531. Financial support from the Austrian Science Foundation (FWF) under Project No. P-16495-N11 is gratefully acknowledged. The authors also want to thank Prof. Harald Schmidt, Department for Physical Chemistry of the University of Vienna, for his assistance with metallographic investigations.

REFERENCES

  1. 1.
    C. Schmetterer, H. Flandorfer, and H. Ipser, accepted for publication in Acta mat.Google Scholar
  2. 2.
    M. Singleton and P. Nash . Bull. Alloy Phase Diag. 8,119 (1987).Google Scholar
  3. 3.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams. ASM International (1996).Google Scholar
  4. 4.
    C. Colinet and A. Pasturel, Z. Metallkd. 89, 863 (1998).Google Scholar
  5. 5.
    I. Karakaya and W.T. Thompson, Bull. Alloy Phase Diag. 8, 340 (1987).Google Scholar
  6. 6.
    C. Schmetterer, H. Flandorfer, K.W. Richter, U. Saeed, M. Kauffman, P. Roussel, and H. Ipser, Intermetallics 15(7), 869 (2007).Google Scholar
  7. 7.
    P. Nash and A. Nash, Bull. Alloy Phase Diag. 6, 350 (1985).Google Scholar
  8. 8.
    G. Ghosh, Metall. Mater. Trans. A 30, 1481 (1999).CrossRefGoogle Scholar
  9. 9.
    H.S. Liu, J. Wang, and Z.P. Jin, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 28, 363 (2005).Google Scholar
  10. 10.
    A. Havlicek (Ph.D. Thesis, University of Vienna, 1991).Google Scholar
  11. 11.
    W. Mikulas and L. Thomassen, Trans. AIME, Inst. Metal. Div. 124, 111 (1937).Google Scholar
  12. 12.
    K. Schubert, W. Burkhardt, P. Esslinger, E. Günzel, H.G. Meissner, W. Schütt, J. Wegst, and M. Wilkens, Naturwissenschaften 43, 248 (1956).CrossRefGoogle Scholar
  13. 13.
    A. Leineweber, M. Ellner, and E.J. Mittemeijer, J. Solid State Chem. 159, 191 (2001).CrossRefGoogle Scholar
  14. 14.
    A. Leineweber, O. Oeckler, and U. Zachwieja, J. Solid State Chem. 177, 936 (2004).CrossRefGoogle Scholar
  15. 15.
    A. Leineweber, J. Solid State Chem. 177, 1197 (2004).CrossRefGoogle Scholar
  16. 16.
    A. Leineweber, E.J. Mittemeijer, M. Knapp, and C. Baehtz, Mater. Sci. Forum 443–444, 247 (2004).CrossRefGoogle Scholar
  17. 17.
    E. Fetz and E.R. Jette, J. Chem. Phys. 4, 537 (1936).CrossRefGoogle Scholar
  18. 18.
    E. Fetz and E.R. Jette, Trans. AIME 124, 133 (1937).Google Scholar
  19. 19.
    O. Nial, Svensk Kemisk Tidskrift 59–60, 172 (1947–1948).Google Scholar
  20. 20.
    F. Lihl and H. Kirnbauer, Monatsh. Chem. 86, 745 (1955).CrossRefGoogle Scholar
  21. 21.
    F. Lihl and H. Kirnbauer, Z. Metallkd, 46, 438 (1955).Google Scholar
  22. 22.
    M.K. Bhargava and K. Schubert, J. Less-Common Met. 33, 181 (1973).CrossRefGoogle Scholar
  23. 23.
    G. Ghosh, J. Electron. Mater. 29, 1182 (2000).CrossRefGoogle Scholar
  24. 24.
    Hs.-F. Hsu and S.-W. Chen, Acta Mater. 52, 2541 (2004).CrossRefGoogle Scholar
  25. 25.
    S.-W. Chen, Hs.-F. Hsu, and Ch.-W. Lin, J. Mater. Res. 19, 2262 (2004).CrossRefGoogle Scholar
  26. 26.
    H. Ipser, H. Flandorfer, Ch. Luef, C. Schmetterer, and U. Saeed, J. Mater. Sci.: Mater. Electron. 1–3, 3 (2007).Google Scholar
  27. 27.
    STRUKTUR-PC-program package (Wacha W. Diploma Thesis, Vienna University of Technology, 1989).Google Scholar
  28. 28.
    P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. ASM International (1991).Google Scholar
  29. 29.
    U. Saeed, H. Flandorfer, and H. Ipser, J. Mater. Res. 21, 1294 (2006).CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Clemens Schmetterer
    • 1
  • Hans Flandorfer
    • 1
  • Klaus W. Richter
    • 1
  • Herbert Ipser
    • 1
  1. 1.Department of Inorganic Chemistry/Materials ChemistryUniversity of ViennaViennaAustria

Personalised recommendations