Journal of Electronic Materials

, Volume 36, Issue 10, pp 1320–1325 | Cite as

Neutron Radiation Effects in Epitaxially Laterally Overgrown GaN Films

  • A. Y. Polyakov
  • N. B. Smirnov
  • A. V. Govorkov
  • A. V. Markov
  • E. B. Yakimov
  • P. S. Vergeles
  • N. G. Kolin
  • D. I. Merkurisov
  • V. M. Boiko
  • In-Hwan Lee
  • Cheul-Ro Lee
  • S. J. Pearton
Open Access
Article

Neutron radiation effects were studied in undoped n-GaN films grown by epitaxial lateral overgrowth (ELOG). The irradiation leads to carrier removal and introduces deep electron traps with activation energy 0.8 eV and 1 eV. After the application of doses exceeding 1017 cm−2, the material becomes semi-insulating n-type, with the Fermi level pinned near the level of the deeper electron trap. These features are similar to those previously observed for neutron irradiated undoped n-GaN prepared by standard metal–organic chemical vapor deposition (MOCVD). However, the average carrier removal rate and the deep center introduction rate in ELOG samples is about five-times lower than in MOCVD samples. Studies of electron beam induced current (EBIC) show that the changes in the concentration of charged centers are a minimum in the low-dislocation-density laterally overgrown regions and radiation-induced damage propagates inside these laterally overgrown areas from their boundary with the high-dislocation-density GaN in the windows of the ELOG mask.

Key words

GaN ELOG neutron irradiation 

Notes

ACKNOWLEDGEMENTS

The work at the Institute of Rare Metals (IRM) was supported in part by a grant from the Russian Foundation for Basic Research (RFBR grant # 05-02-08015) and ICTS (grant # 3029). The work at the University of Florida (UF) was partially supported by NSF DMR-040010.

REFERENCES

  1. 1.
    S. Nakamura, GaN and Related Materials II, ed. S.J. Pearton (New York: Gordon and Breach Science Publishers, 1999), pp. 1–45.Google Scholar
  2. 2.
    M.S. Shur and M.A. Khan, GaN and Related Materials II, ed. S.J. Pearton (New York: Gordon and Breach Science Publishers, 1999), pp. 47–92.Google Scholar
  3. 3.
    C.A. Usui, H. Sunakawa, A. Sakai, and A.A. Yamaguchi, Jpn. J. Appl. Phys. 36: L899 (1997).CrossRefGoogle Scholar
  4. 4.
    D.C. Look, D.C. Reynolds, J.W. Hemsky, J.R. Sizelove, R.L. Jones, andR.J. Molnar, Phys. Rev. Lett. 79: 2273 (1997).CrossRefGoogle Scholar
  5. 5.
    Z.-Q. Fang, D.C. Look, W. Kim, Z. Fan, A. Botchkarev, andH. Morkoc, Appl. Phys. Lett. 72, 2277 (1998).CrossRefGoogle Scholar
  6. 6.
    S.A. Goodman, F.D. Auret, F.K. Koschnick, J.-M. Spaeth, B. Baumont, and P. Gibart, Mater. Sci. Eng., B 71, 100 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Hayes, F.D. Auret, L. Wu, W.E. Meyer, J.M. Nel, andM.J. Legodi, Physica B, 340–342, 421 (2003).CrossRefGoogle Scholar
  8. 8.
    P. Hacke, T. Detchprom, K. Hiramatsu, andN. Sawaki, Appl. Phys. Lett. 63, 2676 (1993).CrossRefGoogle Scholar
  9. 9.
    A.Y. Polyakov, A.S. Usikov, B. Theys, N.B. Smirnov, A.V. Govorkov, F. Jomard, N.M. Shmidt, andW.V. Lundin, Solid-State Electron., 44, 1971 (2000).CrossRefGoogle Scholar
  10. 10.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, S.J. Pearton, N.G. Kolin, D.I. Merkurisov, V.M. Boiko, C.-R. Lee, and I.-H. Lee, J. Vac. Sci. Technol., B 25, 436 (2007).CrossRefGoogle Scholar
  11. 11.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, N.G. Kolin, D.I. Merkurisov, V.M. Boiko, K.D. Shcherbatchev, V.T. Bublik, M.I. Voronova, I-H. Lee, and C.R. Lee, J. Appl. Phys. 100, 093715 (2006).CrossRefGoogle Scholar
  12. 12.
    D.C. Look, Z.-Q. Fang, and B. Claffin, J. Cryst. Growth 281, 143 (2005).CrossRefGoogle Scholar
  13. 13.
    F.D. Auret, W.E. Meyer, L. Wu, M. Hayes, M.J. Legodi, B. Beaumont, and P. Gibart, Phys. Status Solidi A 201, 2271 (2004).CrossRefGoogle Scholar
  14. 14.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, J.H. Baek, C.-R. Lee, I.-H. Lee, N.G. Kolin, I.D. Merkurisov, V.M. Boiko, and S.J. Pearton, Abstracts of European Workshop on III-Nitride Semiconductor Materials, Heraklion, Crete, Greece, September 2006 (Heraklion: Heraklion University, 2006), pp. 82–83.Google Scholar
  15. 15.
    C.J. Wu and D.B. Wittry, J. Appl. Phys. 49, 2827 (1978).CrossRefGoogle Scholar
  16. 16.
    J.Y. Chi and H.C. Gatos, J. Appl. Phys. 50, 3433 (1979).CrossRefGoogle Scholar
  17. 17.
    C. Frigeri, Inst. Phys. Conf. Ser. 87: 745 (1987).Google Scholar
  18. 18.
    E.B. Yakimov, Solid State Phenomena V. 78–79, ed. H.␣Tokamage and T. Sekiguchi (Zuerich-Uetikon, Switzerland: Scitec Publications, 2001), pp. 79–85.Google Scholar
  19. 19.
    E.B.Yakimov, S.S. Borisov, and S.I. Zaitsev, Russ. Phys. Semicond., 41, 426 (2007).Google Scholar
  20. 20.
    I.-H. Lee, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, and S.J. Pearton, Phys. Status Solidi C 3, 2087 (2006).CrossRefGoogle Scholar
  21. 21.
    I.-H. Lee, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, and S.J. Pearton, Thin Solid Films, 2007, in press.Google Scholar
  22. 22.
    E.B. Yakimov, P.S. Vergeles, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, I.-H. Lee, Cheul-Ro Lee, and S.J. Pearton, Appl. Phys. Lett. 90, 152114 (2007).CrossRefGoogle Scholar
  23. 23.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, M. Shin, M. Skowronski, andD.W. Greve, J. Appl. Phys. 84, 870 (1998).CrossRefGoogle Scholar
  24. 24.
    A.Y. Polyakov, N.B. Smirnov, A.S. Usikov, A.V. Govorkov, andB.V. Pushniy, Solid State Electron., 42, 1959 (1998).CrossRefGoogle Scholar
  25. 25.
    L.S. Berman and A.A. Lebedev, Capacitance Spectroscopy of Deep Defects in Semiconductors (Leningrad: Nauka, 1981 [in Russian]).Google Scholar
  26. 26.
    B.R. Gossick, J. Appl. Phys. 30, 1214 (1959).CrossRefGoogle Scholar
  27. 27.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, and J.M. Redwing, Solid State Electron., 42, 831 (1998).CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • A. Y. Polyakov
    • 1
  • N. B. Smirnov
    • 1
  • A. V. Govorkov
    • 1
  • A. V. Markov
    • 1
  • E. B. Yakimov
    • 2
  • P. S. Vergeles
    • 2
  • N. G. Kolin
    • 3
  • D. I. Merkurisov
    • 3
  • V. M. Boiko
    • 3
  • In-Hwan Lee
    • 4
  • Cheul-Ro Lee
    • 4
  • S. J. Pearton
    • 5
  1. 1.Institute of Rare MetalsMoscowRussia
  2. 2.Institute of Microelectronics Technology RASChernogolovkaRussia
  3. 3.Obninsk Branch of Federal State Unitary EnterpriseKarpov Institute of Physical ChemistryObninskRussia
  4. 4.School of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering CollegeChonbuk National UniversityChonjuKorea
  5. 5.Department of Materials Science EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations