Journal of Electronic Materials

, Volume 36, Issue 12, pp 1621–1624 | Cite as

Electron and Hole Capture Cross-Sections of Fe Acceptors in GaN:Fe Epitaxially Grown on Sapphire

  • T. AggerstamEmail author
  • A. Pinos
  • S. Marcinkevičius
  • M. Linnarsson
  • S. Lourdudoss
Open Access

Carrier trapping of Fe3+/Fe2+ deep acceptors in epitaxially grown GaN:Fe on sapphire was studied by time-resolved photoluminescence. For the investigated Fe doping levels on the order of 1018 cm−3, the luminescence decay times are strongly dependent on the Fe concentration, indicating that Fe centers act as predominant nonradiative recombination channels. Linear dependence of the decay time on the iron concentration allows estimation of the electron capture cross-section for the Fe3+ ions, which is equal to 1.9 × 10−15 cm2. The upper bound for the cross-section of the hole capture of Fe2+ was evaluated as 1 × 10−15 cm2.

Key words

GaN Fe semi-insulating high electron mobility transistor (HEMT) deep acceptor electron capture cross section  metal–organic vapor phase epitaxy (MOVPE) 


  1. 1.
    S.M. Hubbard, G. Zhao, D. Pavlidis, W. Sutton, and E. Cho, J. Cryst. Growth 284, 297 (2005).CrossRefGoogle Scholar
  2. 2.
    J. Baur, K. Maier, M. Kunzer, U. Kaufmann, J. Schneider, H. Amano, I. Akasaki, T. Detchprohm, and K. Hiramatsu, Appl. Phys. Lett., 64, 857 (1994).CrossRefGoogle Scholar
  3. 3.
    S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, Appl. Phys. Lett., 81, 439 (2002).CrossRefGoogle Scholar
  4. 4.
    Z. Bougrioua, M. Azize, A. Jimenez, A.-F. Braña, P. Lorenzini, B. Beaumont, E. Muñoz, and P. Gibart, Phys. Status Solidi C 2, 2424 (2005).CrossRefGoogle Scholar
  5. 5.
    T. Aggerstam, M. Sjödin, and S. Lourdudoss, Phys. Status Solidi C 3, 2373 (2006).CrossRefGoogle Scholar
  6. 6.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.V. Pashkova, A.A. Shlensky, S.J. Pearton, M.E. Overberg, C.R. Abernathy, J.M. Zavada, and R.G. Wilson, J. Appl. Phys. 93, 5388, (2003).CrossRefGoogle Scholar
  7. 7.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, S.J. Pearton, and J.M. Zavada, J. Phys.: Condens. Matter 16, 2967 (2004).CrossRefGoogle Scholar
  8. 8.
    F. Rotermund and F. Petrov, Opt. Lett. 23, 1040 (1998).Google Scholar
  9. 9.
    J.F. Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey Jr., B.P. Keller, U.K. Mishra, and S.P. DenBaars, Appl. Phys. Lett. 71, 2572 (1997).CrossRefGoogle Scholar
  10. 10.
    J. I. Pankove, S. Bloom, and G. Harbeke, RCA Rev. 36, 163 (1975).Google Scholar
  11. 11.
    D. Söderström, S. Marcinkevičius, S. Karlsson, and S. Lourdudoss, Appl. Phys. Lett. 70, 3374 (1997).CrossRefGoogle Scholar
  12. 12.
    V.N. Abakumov, V.I. Perel, and I.N. Yassievich, Nonradiative recombination in semiconductors (Amsterdam, The Netherlands, 1991) p. 120.Google Scholar
  13. 13.
    A. Gaarder, S. Marcinkevičius, E. Rodríguez Messmer, and S. Lourdudoss, J. Cryst. Growth 226, 451 (2001).CrossRefGoogle Scholar
  14. 14.
    A. Dadgar, R. Engelhardt, M. Kuttler, and D. Bimberg, Phys. Rev. B: Condens. Matter Mater. Phys. 56, 10241 (1997).Google Scholar
  15. 15.
    J. Baur, K. Maier, M. Kunzer, and U. Kaufmann, J. Schneider, Appl. Phys. Lett. 65, 2211 (1994).CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • T. Aggerstam
    • 1
    Email author
  • A. Pinos
    • 1
  • S. Marcinkevičius
    • 1
  • M. Linnarsson
    • 1
  • S. Lourdudoss
    • 1
  1. 1.Department of Microelectronics and Applied PhysicsRoyal Institute of TechnologyKistaSweden

Personalised recommendations