Journal of Electronic Materials

, Volume 36, Issue 9, pp 1188–1192 | Cite as

Silver Particle Carbon-Matrix Composites as Thick Films for Electrical Applications

Open Access
Article

Silver particle (3 μm) carbon-matrix composites in the form of thick films (around 100 μm thick) on alumina, as prepared from pastes comprising silver and mesophase pitch particles (14 μm), have been attained. The films on alumina were fired at 650°C in nitrogen to convert pitch to carbon. The volume electrical resistivity attained ranged from 10−5 Ω cm to 104 Ω cm, depending on the silver volume fraction. The percolation threshold was 12 vol% silver.

Key words

Composite carbon silver thick film electrical resistivity 

References

  1. 1.
    Z. Liu and D.D.L. Chung, J. Electron. Mater. 33(3), 194 (2004).CrossRefGoogle Scholar
  2. 2.
    I.R. McNab and J.L. Johnson, IEEE Transact. Components Hybrids Manufact. Technol. 1(1), 84 (1979).CrossRefGoogle Scholar
  3. 3.
    C.-T. Lu, and M.D. Bryant IEEE Transact. Components Hybrids Manufact. Technol. Part A 17(1), 68 (1994).CrossRefGoogle Scholar
  4. 4.
    S. Miyanaga, H. Yasuda, A. Hiwara, A. Nakumura, and H. Sakai, J. Macromol. Sci. Chem. A27(9–11), 1347 (1990).Google Scholar
  5. 5.
    M. Fukuda and S. Mizogami, Patent No. JP 01131012, 5 pp (1989)Google Scholar
  6. 6.
    T. Akahira, S. Shimamune, and M. Tsuboyama, Rep. Sci. Res. Inst. (Jpn.), 28, 205 (1952).Google Scholar
  7. 7.
    S. Strijbos, Philips Res. Rep. 27(2), 186 (1972).Google Scholar
  8. 8.
    T. Endo, Patent No. JP 50095797, 3 pp (1975)Google Scholar
  9. 9.
    T. Ciborowski and K. Goratowski, Pol. Tech. Rev. 9, 2 (1977).Google Scholar
  10. 10.
    J.T. Law, Patent No. GB 1246443, 5 pp (1971)Google Scholar
  11. 11.
    H. Ohdaira, H. Suzuki, and M. Saito, Int. J. Hybrid Microelectron. 6(1), 276 (1983).Google Scholar
  12. 12.
    K. Tezuka, S. Tateyama, and E. Sasaki, Patent No. JP 63289801, 4 pp (1988)Google Scholar
  13. 13.
    V.K. Dmitriev, V.N. Inkin, G.G. Kirpilenko, B.G. Potapov, E.A. Ilyichev, and E.Y. Shelukhin, Diamond Relat. Mater. 10(3–7), 1007 (2001).CrossRefGoogle Scholar
  14. 14.
    I. Kaneko, A. Zaki, and C. Higuchi, Erekutoronikusu Jisso Gakkaishi 7(3), 230 (2004).Google Scholar
  15. 15.
    A.V. Kalmykov and P.A. Topolyanskii, Russ. J. Nondestruct. Test. 39(10), 757 (2003).CrossRefGoogle Scholar
  16. 16.
    R. Modi, H.D. Wu, R.C.Y. Gilmore, and D.B. Chrisey, J. Mater. Res. 16(11), 3214 (2001).CrossRefGoogle Scholar
  17. 17.
    M. Karaki, Patent No. JP 2001019891, 5 pp (2001)Google Scholar
  18. 18.
    K. Suga, Patent No. JP 08046315, 4 pp (1996)Google Scholar
  19. 19.
    H. Czarczynska, B. Licznerski, A. Dziedzic, A. Gasperowicz, and M. Wojcieszonek, Patent No. PL 168358, 3 pp (1996)Google Scholar
  20. 20.
    A. Dziedzic, H. Czarczynska, B.W. Licznerski, and I. Rangelov, J. Mater. Sci. 4(3), 233 (1993).CrossRefGoogle Scholar
  21. 21.
    D.D.L. Chung, Carbon Fiber Composites (Butterworth-Heinemann, 1994)Google Scholar
  22. 22.
    Mitsubishi Gas Chemical Company, Inc., Impregnation and Stabilization Method for Carbon-Carbon Composites Google Scholar
  23. 23.
    D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J. Am. Ceramic Soc. 73(8), 2187 (1990).CrossRefGoogle Scholar
  24. 24.
    C.-K. Leong and D.D.L. Chung, J. Electron. Mater. 35(1), 118 (2006).CrossRefGoogle Scholar
  25. 25.
    K.-D. Kim and D.D.L. Chung, J. Electron. Mater. 31(9), 933 (2002).CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  1. 1.Composite Materials Research LaboratoryUniversity at Buffalo, State University of New YorkBuffaloUSA

Personalised recommendations