Journal of Electronic Materials

, Volume 36, Issue 7, pp 716–720 | Cite as

Development and Evolution of Nanostructure in Bulk Thermoelectric Pb-Te-Sb Alloys

  • Teruyuki Ikeda
  • Vilupanur A. Ravi
  • Lauren A. Collins
  • Sossina M. Haile
  • G. Jeffrey SnyderEmail author


Motivated by reports of exceptionally high zT > 2 in thin film superlattices or “quantum well” materials with nanometer sized features, we have undertaken a study of composite materials with nanoscale features that promise to provide similar structures in bulk material. Nanometer scale layers of PbTe and Sb2Te3 with periodicities of 180 nm to 950 nm form when quenched eutectic PbTe-Sb2Te3 melt, crystallizing as Pb2Sb6Te11, subsequently annealed. The lamellar spacing depends on the temperature and time of the anneal. The mechanism for the development of the nanostructures is probed by examining the fraction of material transformed as a function of anneal time. Preliminary analysis of the shape factor exponent reveals that the transformation to the nanostructured lamellae bears similarities to the thickening of very large plates. The coarsening of the lamellar spacing is also examined as a function of time and temperature.


Thermoelectric lamellar spacing fraction transformed coarsening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Office of Naval Research. LC was supported by the SURF program at Caltech.


  1. 1.
    D.M. Rowe, CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995), p. 701Google Scholar
  2. 2.
    N.K. Abrikosov, E.I. Elagina, M.A. Popova, Inorg. Mater. 1, 1944 (1965)Google Scholar
  3. 3.
    T. Ikeda, S.M. Haile, V.A. Ravi, H. Azizgolshani, F. Gascoin, G.J. Snyder, Acta Mater. 55, 1227 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Ikeda, L.A. Collins, V.A. Ravi, F.S. Gascoin, S.M. Haile, G.J. Snyder, Chem. Mater. 19, 763 (2007)CrossRefGoogle Scholar
  5. 5.
    J.C. Caylor, K. Coonley, J. Stuart, T. Colpitts, R. Venkatasubramanian, Appl. Phys. Lett. 87, 023105 (2005)CrossRefGoogle Scholar
  6. 6.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)CrossRefGoogle Scholar
  7. 7.
    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2003)CrossRefGoogle Scholar
  8. 8.
    G. Chen, Proc Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems 2004 (IEEE Cat. No. 04CH37543); p. 8Google Scholar
  9. 9.
    P.E.J. Flewitt, R.K. Wild, Physical Methods for Materials Characterization (Bristol and Philadelphia: Institute of Physics Publishing, 1994), p. 283Google Scholar
  10. 10.
    L.E. Shelimova, O.G. Karpinskii, T.E. Svechnikova, E.S. Avilov, M.A. Kretova, V.S. Zemskov, Inorg. Mater. 40, 1264 (2004)CrossRefGoogle Scholar
  11. 11.
    A.N. Kolmogorov, Bull. Acad. of Science, USSR, Phys. Ser. 1, 355 (1937). Google Scholar
  12. 12.
    W.A. Johnson, R.F. Mehl, Trans. AIME, 135, 416 (1939)Google Scholar
  13. 13.
    M. Avrami, J. Chem. Phys. 7, 1103 (1939)CrossRefGoogle Scholar
  14. 14.
    M. Avrami, J. Chem. Phys. 8, 212 (1940)CrossRefGoogle Scholar
  15. 15.
    M. Avrami, J. Chem. Phys. 9, 177 (1941)CrossRefGoogle Scholar
  16. 16.
    E.S. Machlin, An Introduction to Aspects of Thermodynamics and Kinetics, revised ed. (GIRO Press, Croton-on-Hudson, 1999), p. 249Google Scholar
  17. 17.
    T. Ikeda et al., unpublishedGoogle Scholar
  18. 18.
    L.D. Graham, R.W. Kraft, Trans. Metall. Soc. AIME, 236, 94 (1966)Google Scholar
  19. 19.
    H.E. Cline, Acta Metall. 19, 481 (1971)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Teruyuki Ikeda
    • 1
  • Vilupanur A. Ravi
    • 2
  • Lauren A. Collins
    • 2
  • Sossina M. Haile
    • 1
  • G. Jeffrey Snyder
    • 1
    Email author
  1. 1.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.California State Polytechnic UniversityPomonaUSA

Personalised recommendations