Advertisement

Journal of Electronic Materials

, Volume 36, Issue 7, pp 721–726 | Cite as

Solution-Chemical Syntheses of Nano-Structured Bi2Te3 and PbTe Thermoelectric Materials

  • X. JiEmail author
  • B. Zhang
  • T.M. Tritt
  • J.W. Kolis
  • A. Kumbhar
Article

In this work, nano-structured Bi2Te3 and PbTe thermoelectric materials were synthesized separately via solvothermal, hydrothermal and low-temperature aqueous chemical routes. X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) were used to analyze the powder products. Results showed that the as-prepared Bi2Te3 samples were all single-phased and consisted of irregular spherical granules with diameters of ∼30 nm whereas the PbTe samples were mainly composed of well-crystallized cubic crystals with average size of approximately 100 nm. Some nanotubes and nanorods were found in Bi2Te3 and PbTe samples, respectively; these were identified as Bi2Te3 nanotubes and PbTe nanorods by EDS analysis. Possible reaction mechanisms for these syntheses are discussed in detail herein.

Keywords

Thermoelectric materials nano-structured Bi2Te3 PbTe solution-chemical synthesis reaction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We cordially acknowledge financial support from a DOE/EPSCoR Implementation Grant (#DE-FG02-04ER-46139) and support from the SC EPSCoR Office/Clemson University cost sharing for the work reported in this publication.

References

  1. 1.
    B.C. Sales, Science 295, 1248 (2002)CrossRefGoogle Scholar
  2. 2.
    F.J. DiSalvo, Science 285, 703 (1999)CrossRefGoogle Scholar
  3. 3.
    G.A. Slack, V.G. Tsoukala, J. Appl. Phys. 76, 1665 (1994)CrossRefGoogle Scholar
  4. 4.
    T.M. Tritt, Science 283, 804 (1999)CrossRefGoogle Scholar
  5. 5.
    B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 1325 (1996)CrossRefGoogle Scholar
  6. 6.
    G.S. Nolas, J.L. Cohn, G.A. Slack, S.B. Schujman, Appl. Phys. Lett. 73, 178 (1998)CrossRefGoogle Scholar
  7. 7.
    M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Adv. Mater. 14, 665 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Martin-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Adv. Mater. 15, 1003 (2003)CrossRefGoogle Scholar
  9. 9.
    T.M. Tritt, M.A. Subramanian, MRS Bull. 31, 188 (2006)Google Scholar
  10. 10.
    Q. Wei, C.M. Lieber, Mater. Res. Soc. Symp. Proc. 581, 219 (1999)Google Scholar
  11. 11.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)CrossRefGoogle Scholar
  12. 12.
    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)CrossRefGoogle Scholar
  13. 13.
    S.H. Yu, J. Yang, Y.S. Wu, Z.H. Han, J. Lu, Y. Xie, Y.T. Qian, J. Mater. Chem. 8, 1949 (1998)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • X. Ji
    • 1
    Email author
  • B. Zhang
    • 1
  • T.M. Tritt
    • 1
  • J.W. Kolis
    • 2
  • A. Kumbhar
    • 3
  1. 1.Department of Physics and AstronomyClemson UniversityClemsonUSA
  2. 2.Department of ChemistryClemson UniversityClemsonUSA
  3. 3.EM FacilityClemson UniversityAndersonUSA

Personalised recommendations