Advertisement

Journal of Electronic Materials

, Volume 36, Issue 5, pp 562–567 | Cite as

In-Situ Observation of Electromigration in Eutectic SnPb Solder Lines: Atomic Migration and Hillock Formation

  • Min-Seung Yoon
  • Min-Ku Ko
  • Oh-Han Kim
  • Young-Bae Park
  • William D. Nix
  • Young-Chang Joo
Article

The real-time microstructural evolution during electromigration of eutectic SnPb solder lines with an edge drift structure was examined using an in-situ scanning electron microscope (SEM) technique. The test temperature and the current density were either 100°C or 50°C and 6 × 10A/cm2 or 8 × 10A/cm2, respectively. In-situ microstructural observation of the depleted phases and quantitative analysis of the number of hillock phases made it clear that the dominant migrating element and dominant hillock phase were Sn and Pb at room temperature, respectively, while both dominant migrating element and dominant hillock phase were Pb at 100°C. Such temperature dependence of the dominant hillock phase in the eutectic SnPb solder can be understood by considering the atomic size factors of the metallic solid solutions. We suggest that at high temperature, it is easier for Pb atoms to be injected into the Pb phase (Pb-phase hillocks); while at low temperature, Pb-phase hillocks were squeezed by Sn, which penetrated the Pb phase.

Keywords

Electromigration eutectic SnPb hillocks in-situ observation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Center for Electronic Packaging Materials, Korea Science and Engineering Foundation, and by the Ministry of Education and Human Resources Development (MOE), the Ministry of Commerce, Industry and Energy (MOCIE), and the Ministry of Labor (MOLAB) through the fostering project of the Lab of Excellency. Y.-C. Joo acknowledges a 2005 LG Yonam Foundation Fellowship for the partial support of his stay at Stanford University.

References

  1. 1.
    S. Brandenburg, S. Yeh, Proc. Surface Mount Int. 1998 Conf. Expo. (San Jose, CA, 1998), p. 337Google Scholar
  2. 2.
    C.Y. Liu, C. Chen, C.N. Liao, K.N. Tu, Appl. Phys. Lett. 75, 58 (1999)CrossRefGoogle Scholar
  3. 3.
    Q.T. Huynh, C.Y. Liu, C. Chen, K.N. Tu, J. Appl. Phys. 89, 4332 (2001)CrossRefGoogle Scholar
  4. 4.
    T.Y. Lee, K.N. Tu, S.M. Kuo, D.R. Frear, J. Appl. Phys. 89, 3189 (2001)CrossRefGoogle Scholar
  5. 5.
    J.-Y. Choi, S.-S. Lee, Y.-C. Joo, Jpn. J. Appl. Phys. Part I 41, 7487 (2002)CrossRefGoogle Scholar
  6. 6.
    M.-S. Yoon, S.-B. Lee, O.-H. Kim, Y.-B. Park, Y.-C. Joo, J. Appl. Phys. 100, 033715 (2006)CrossRefGoogle Scholar
  7. 7.
    I.A. Blech, C. Herring, Appl. Phys. Lett. 29, 131 (1976)CrossRefGoogle Scholar
  8. 8.
    Y.T. Yeh, C.K. Chou, Y.C. Hsu, C. Chen, K.N. Tu, Appl. Phys. Lett. 86, 203504 (2005). CrossRefGoogle Scholar
  9. 9.
    M.Y. Yan, J.O. Suh, F. Ren, K.N. Tu, A.V. Vairagar, S.G. Mhaisalker, Ahila Krishnamoorthy, Appl. Phys. Lett. 87, 211103 (2005)CrossRefGoogle Scholar
  10. 10.
    Y.H. Hsiao, Y.C. Chuang, C.Y. Liu, Scripta Mater. 54, 661 (2006)CrossRefGoogle Scholar
  11. 11.
    D. Gupta, K. Viergge, W. Gust, Acta Mater. 47, 5 (1999)CrossRefGoogle Scholar
  12. 12.
    M.-S. Yoon, Y.-B. Park, and Y.-C. Joo, Scripta Mater. (2006), submitted for publicationGoogle Scholar
  13. 13.
    H.W. King, J. Mater. Sci. 1, 79 (1966)CrossRefGoogle Scholar
  14. 14.
    C.C. Wei, C.Y. Liu, J. Mater. Res. 20, 2072 (2005)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Min-Seung Yoon
    • 1
  • Min-Ku Ko
    • 1
  • Oh-Han Kim
    • 2
  • Young-Bae Park
    • 2
  • William D. Nix
    • 3
  • Young-Chang Joo
    • 1
    • 3
  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.School of Materials Science and EngineeringAndong National UniversityAndongKorea
  3. 3.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations