Journal of Electronic Materials

, Volume 36, Issue 5, pp 555–561 | Cite as

Migration, Formation, and Growth of Pure Cd Whiskers in Cd-Based Compounds

Regular Issue Paper

The migration, formation, and growth of Cd islands and long whiskers were studied in single crystals of Cd84Yb16, Cd51Yb14, and Cd17Ca3 and polycrystals of Cd85Ni15 and high-purity Cd. It was found that Cd moves rapidly to the sample surface in quasi-crystal Cd84Yb16, forming islands in less than 2 h. The Cd whiskers that have submicron diameters and lengths of several hundred microns to millimeters can grow in several days under high vacuum. Evidence was presented to demonstrate that the whiskers grow from the base instead of the tip. While whiskers are easily observed in hex-CdYb, i-CdYb, and CdCa single crystals, no Cd whisker formation or migration of any kind was present on the surfaces of Cd85Ni15 and pure Cd samples, subjected to similar environmental conditions for even longer durations. This result suggests that oxidation of the reactive element is essential for the enhanced whisker growth kinetics observed. Because Cd islands and whiskers grow spontaneously in a matter of hours instead of months required for tin or zinc whiskers, CdYb alloys would be good candidates for detailed whisker formation and growth mechanisms studies.


Metal whiskers quasi-crystal cadmium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Office of Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy, under Contract No. W-7405-ENG-82.


  1. 1.
    H.L. Cobb, Mon. Rev. Am. Electroplat. Soc. 33, 28 (1946)Google Scholar
  2. 2.
    S.C. Britton, Trans. Inst. Met. Finish. 52, 95 (1974)Google Scholar
  3. 3.
    G.A. Smith, Circ. Manufact. 7, 66 (1977)Google Scholar
  4. 4.
    D.R. Gabe, Trans. IMF 65, 115 (1987)Google Scholar
  5. 5.
    B.Z. Lee, D.N. Lee, Acta Mater. 46, 3701 (1998)CrossRefGoogle Scholar
  6. 6.
    F.C. Frank, Phil. Mag. 44, 854 (1953)Google Scholar
  7. 7.
    V.K. Glazunova, K.M. Gorbunova, J. Cryst. Growth 10, 85 (1971)CrossRefGoogle Scholar
  8. 8.
    U. Lindborg, Acta Metall. 24, 181 (1976)CrossRefGoogle Scholar
  9. 9.
    W.C. Ellis, D.F. Gibbons, and R.G. Treuting, in Crystal Growth and Perfection in Crystals, ed. R.H. Doremus, B.W.␣Roberts, and D. Turnbull (New York: John Wiley, 1958), p. 102Google Scholar
  10. 10.
    K.N. Tu, Acta Metall. 21, 347 (1973)CrossRefGoogle Scholar
  11. 11.
    K. Zheng, K.N. Tu, Mater. Sci. Eng. R38, 55 (2002)Google Scholar
  12. 12.
    G.T.T. Sheng, C.F. Liu, W.J. Choi, K.N. Tu, Y.Y. Bong, L. Nguyen, J. Appl. Phys. 92, 64 (2002)CrossRefGoogle Scholar
  13. 13.
    W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, Y.Y. Bong, L. Nguyen, Acta Mater. 51, 6253 (2003)CrossRefGoogle Scholar
  14. 14.
    A.P. Tsai, J.Q. Guo, E. Abe, H. Takakura, T.J. Sato, Nature 408, 537 (2000)CrossRefGoogle Scholar
  15. 15.
    J.Q. Guo, E. Abe, A.P. Tsai, Phys. Rev. B 62, R14605 (2000)CrossRefGoogle Scholar
  16. 16.
    D. Wu, O. Ugurlu, L.S. Chumbley, M.J. Kramer, T.A. Lograsso, Phil. Mag. 86, 381 (2006)CrossRefGoogle Scholar
  17. 17.
    Materials Preparation Center, Ames Laboratory, US-DOE, Ames, IA, www.mpc.ameslab.govGoogle Scholar
  18. 18.
    C. Herring, J.K. Galt, Phys. Rev. 85, 1060 (1952)CrossRefGoogle Scholar
  19. 19.
    J. Franks, Nature (Lett. Ed.) 177, 984 (1956)CrossRefGoogle Scholar
  20. 20.
    B.H. Chudnovsky, Electric. Cont. 48, 140 (2002). Google Scholar
  21. 21.
    M.W. Barsoum, E.N. Hoffman, R.D. Doherty, S. Gupta, A. Zavaliangos, Phys. Rev. Lett. 93, 206104–1 (2004)CrossRefGoogle Scholar
  22. 22.
    S.E. Koonce, S.M. Arnold, J. Appl. Phys. (Lett. Ed.) 24, 354 (1953)Google Scholar
  23. 23.
    U. Lindborg, Metall. Trans. A 6, 1581 (1975)CrossRefGoogle Scholar
  24. 24.
    D.K. Kim, B. Heiland, W.D. Nix, E. Artz, M.D. Deal, J.D. Plummer, Thin Solid Films 371, 278 (2000)CrossRefGoogle Scholar
  25. 25.
    Y.T. Cheng, A.M. Weiner, C.A. Wong, M.P. Balogh, M.J. Lukitsch, Appl. Phys. Lett. 81, 3248 (2002)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  1. 1.Materials Engineering and Physics Program, Ames LaboratoryIowa State UniversityAmesUSA

Personalised recommendations