Journal of Electronic Materials

, Volume 35, Issue 6, pp 1391–1398 | Cite as

HgCdTe negative luminescence devices for cold shielding and other applications

  • J. R. Lindle
  • W. W. Bewley
  • I. Vurgaftman
  • J. R. Meyer
  • J. L. Johnson
  • M. L. Thomas
  • E. C. Piquette
  • W. E. Tennant
  • E. P. Smith
  • S. M. Johnson
Article

Abstract

Negative luminescence (NL) refers to the suppression of infrared blackbody emission, and hence an apparent temperature reduction, due to free carrier extraction from a reverse-biased p-n junction. A number of applications are envisioned for NL devices, including cold shielding of background-limited uncooled and cryogenic focal-plane arrays, dynamic nonuniformity correction for ir imaging, and ir scene simulation. High-performance NL devices have recently been demonstrated. For example, a HgCdTe/CdZnTe photodiode with 4.8-µm cutoff wavelength achieved an internal NL efficiency of 95% at room temperature. This means that the blackbody emission was suppressed by a factor of 20 and that the apparent temperature of the device surface decreased by 60 K. The corresponding reverse-bias saturation current density was 0.11 A/cm2. Even HgCdTe devices (λco=5.3 µm) grown on large-area silicon substrates with substantial lattice mismatch displayed 88% internal NL efficiency and saturation current densities no larger than 1.3 A/cm2. These results indicate a clear path toward a negative-luminescence device technology that is efficient, operates at low power, and is inexpensive.

Key words

LWIR detectors negative luminescence HgCdTe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Ashley and C.T. Elliott, Electron. Lett. 21, 451 (1985).CrossRefGoogle Scholar
  2. 2.
    J.R. Lindle, W.W. Bewley, I. Vurgaftman, J.R. Meyer, J.L. Johnson, M.L. Thomas, and W.E. Tennant, Physica E 20, 558 (2004).CrossRefGoogle Scholar
  3. 3.
    V.I. Ivanov-Omskii, B.T. Kolomiets, and V.A. Smirnov, Dokl. Acad. Nauk SSSR 161, 1308 (1965) [Sov. Phys. Dokl. 10, 345 (1965)].Google Scholar
  4. 4.
    S.S. Bolgov, V.K. Malyutenko, V.I. Pipa, A.P. Savchenko, and Pis’ma Zh. Tekh. Fiz. 15, 49 (1989) [Sov. Tech. Phys. Lett. 15, 641 (1989)].Google Scholar
  5. 5.
    T. Ashley, C.T. Elliott, N.R. Gordon, R.S. Hall, C.D. Maxey, and B.E. Matthews, Appl. Phys. Lett. 65, 2314 (1994).CrossRefGoogle Scholar
  6. 6.
    V.K. Malyutenko, S.S. Bolgov, O.Yu. Malyutenko, and Pis’ma Zh. Tekh. Fiz. 27, 51 (2001) [Tech. Phys. Lett. 27, 644 (2001)].Google Scholar
  7. 7.
    T. Ashley, C.T. Elliot, N.T. Gordon, R.S. Hall, A.D. Johnson, and G.J. Pryce, Infrared Phys. Tech. 36, 1037 (1995).CrossRefGoogle Scholar
  8. 8.
    G.R. Nash, N.T. Gordon, T. Ashley, M.T. Emeny, and T.M. Burke, IEE Proc.-Optoelectron. 150, 371 (2003).CrossRefGoogle Scholar
  9. 9.
    S.S. Bolgov, V.K. Malyutenko, and A.P. Savchenko, Semicond. 31, 444 (1997).CrossRefGoogle Scholar
  10. 10.
    C. Phillips, H. Hardaway, J. Heber, P. Moeck, M. Pullin, P. Tang, and P. Yuen, Proc. SPIE Int. Soc. Opt. Eng. 3279, 154 (1998).Google Scholar
  11. 11.
    M.J. Pullin, H.R. Hardaway, J.D. Heber, and C.C. Phillips, Appl. Phys. Lett. 75, 3437 (1999).CrossRefGoogle Scholar
  12. 12.
    M. Aidaraliev, N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus, and G.N. Talalakin, Semicond. 35, 321 (2001).CrossRefGoogle Scholar
  13. 13.
    B.A. Matveev, N.V. Zotova, S.A. Karandashev, M.A. Remennyi, N.M. Stus, and G.N. Talakin, IEE Proc.-Optoelectron. 149, 33 (2002).CrossRefGoogle Scholar
  14. 14.
    B.A. Matveev, N.V. Zotova, N.D. Il’inskaya, S.A. Karandashev, and M.A. Remennyi, N.M. Stus, and G.N. Talakin, J. Mod. Opt. 49, 743 (2002).CrossRefGoogle Scholar
  15. 15.
    M. Aidaraliev, N.V. Zotova, N.D. Il’inskaya, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus, and G.N. Talalakin, Semicond. Sci. Technol. 18, 269 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Aidaraliev, N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus, and G.N. Talalakin, Semicond. 37, 927 (2003).CrossRefGoogle Scholar
  17. 17.
    M.A. Remennyi, B.A. Matveev, N.V. Zotova, and S.A. Karandashev, N.M. Stus, and G.N. Talakin, Physica E 20, 548 (2004).CrossRefGoogle Scholar
  18. 18.
    N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus, and G.N. Tarakanova, Semicond. 39, 214 (2005).CrossRefGoogle Scholar
  19. 19.
    L.J. Olafsen, I. Vurgaftman, W.W. Bewley, C.L. Felix, E.H. Aifer, J.R. Meyer, J.R. Waterman, and W. Mason, Appl. Phys. Lett. 74, 2681 (1999).CrossRefGoogle Scholar
  20. 20.
    C.T. Elliott, N.T. Gordon, R.S. Hall, T.J. Phillips, A.M. White, C.L. Jones, C.D. Maxey, and N.E. Metcalfe, J. Electron. Mater. 25, 1139 (1996).Google Scholar
  21. 21.
    W.E. Tennant, S. Cabelli, and K. Spariosu, J. Electron. Mater. 28, 582 (1999).CrossRefGoogle Scholar
  22. 22.
    W.W. Bewley, M.J. Jurkovic, C.L. Felix, J.R. Lindle, I. Vurgaftman, J.R. Meyer, E.H. Aifer, J.E. Butler, S.P. Tobin, P.W. Norton, and M.A. Hutchins, Appl. Phys. Lett. 78, 3082 (2001).CrossRefGoogle Scholar
  23. 23.
    T. Ashley, N.T. Gordon, G.R. Nash, C.L. Jones, C.D. Maxey, and R.A. Catchpole, Appl. Phys. Lett. 79, 1136 (2001).CrossRefGoogle Scholar
  24. 24.
    J.R. Lindle, W.W. Bewley, I. Vurgaftman, J.R. Meyer, J.B. Varesi, and S.M. Johnson, Appl. Phys. Lett. 82, 2002 (2003).CrossRefGoogle Scholar
  25. 25.
    W.W. Bewley, J.R. Lindle, I. Vurgaftman, J.R. Meyer, J.L. Johnson, M.L. Thomas, and W.E. Tennant, Appl. Phys. Lett. 83, 3254 (2003).CrossRefGoogle Scholar
  26. 26.
    W.W. Bewley, J.R. Lindle, I. Vurgaftman, J.R. Meyer, J.B. Varesi, and S.M. Johnson, J. Electron. Mater. 32, 651 (2003).CrossRefGoogle Scholar
  27. 27.
    G.R. Nash, M.K. Ashby, J.R. Lindle, N.T. Gordon, W.W. Bewley, J.R. Meyer, J. Giess, L. Haworth, and T. Ashley, J. Appl. Phys. 94, 7300 (2003).CrossRefGoogle Scholar
  28. 28.
    J.R. Lindle, W.W. Bewley, I. Vurgaftman, J.R. Meyer, J.L. Johnson, M.L. Thomas, E. Piquette, and W.E. Tennant, J. Electron. Mater. 33, 600 (2004).CrossRefGoogle Scholar
  29. 29.
    M.K. Haigh, G.R. Nash, N.T. Gordon, J. Edwards, A. Graham, J. Giess, J.E. Hails, and M. Houlton, Appl. Phys. Lett. 86, 011910 (2005).CrossRefGoogle Scholar
  30. 30.
    J.R. Lindle, W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J.L. Johnson, M.L. Thomas, E.C. Piquette, and W.E. Tennant, IEEE J. Quantum Electron. 41, 227 (2005).CrossRefGoogle Scholar
  31. 31.
    An earlier version of the cold shielding concepts illustrated in Figs. 1 and 2 were presented in: J.R. Lindle, W.W. Bewley, I. Vurgaftman, J.R. Meyer, J.L. Johnson, M.L. Thomas, and W.E. Tennant, Proc. MSS 103 National V2 (2004).Google Scholar
  32. 32.
    P.W. Kruse, SPIE Proc. 5406, 437 (2004).CrossRefGoogle Scholar
  33. 33.
    C.M. Hanson, SPIE Proc. 5406, 454 (2004).CrossRefGoogle Scholar
  34. 34.
    P. Berdahl, V. Malyutenko, and T. Morimoto, Infrared Phys. 29, 667 (1989).CrossRefGoogle Scholar
  35. 35.
    V.K. Malyutenko, Physica E 20, 553 (2004).CrossRefGoogle Scholar
  36. 36.
    T. Ashley, C.T. Elliot, N.T. Gordon, T.J. Phillips, and R.S. Hall, Infrared Phys. Tech. 38, 145 (1997).CrossRefGoogle Scholar
  37. 37.
    C.T. Elliott, Philos. Trans. R. Soc. London, Ser. A 359, 567 (2001).CrossRefGoogle Scholar
  38. 38.
    J.-H. Chu, B. Li, K. Liu, and D.-Y. Tang, J. Appl. Phys. 75, 1234 (1994).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • J. R. Lindle
    • 1
  • W. W. Bewley
    • 1
  • I. Vurgaftman
    • 1
  • J. R. Meyer
    • 1
  • J. L. Johnson
    • 2
  • M. L. Thomas
    • 2
  • E. C. Piquette
    • 2
  • W. E. Tennant
    • 2
  • E. P. Smith
    • 3
  • S. M. Johnson
    • 3
  1. 1.Code 5613, Naval Research LaboratoryWashington, DC
  2. 2.Imaging DivisionRockwell ScientificThousand Oaks
  3. 3.Raytheon Vision SystemsGoleta

Personalised recommendations