Journal of Electronic Materials

, Volume 35, Issue 6, pp 1299–1305 | Cite as

Progress in ZnO materials and devices

  • David C. Look


ZnO is a wide-band-gap semiconductor material that is now being developed for many applications, including ultraviolet (UV) light-emitting diodes, UV photodetectors, transparent thin-film transistors, and gas sensors. It can be grown as boules, as thin films, or as nanostructures of many types and shapes. However, as with any useful semiconductor material, its electrical and optical properties are controlled by impurities and defects. Here, we consider various important donor-type impurities, such as H, Al, Ga, and In, and acceptor-type impurities, such as N, P, As, and Sb. We also examine the effects of a few common point defects, including Zn interstitials, Zn vacancies, O vacancies, and complexes of each. The main experimental techniques of interest here include temperature-dependent Hall-effect and low-temperature photoluminescence measurements, because they alone can provide donor and acceptor concentrations and donor energies. The important topic of p-type ZnO is also considered in some detail.

Key words

ZnO defects impurities LEDs TTFTs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.E. Brown, ZnO Rediscovered (New York: The New Jersey Zinc Co., 1957), p. 31.Google Scholar
  2. 2.
    D.C. Look, Mater. Sci.Eng., B 80, 383 (2001).CrossRefGoogle Scholar
  3. 3.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).CrossRefGoogle Scholar
  4. 4.
    G.-C. Yi, C. Wang, and W.I. Park, Semicond. Sci. Technol. 20, S22 (2005).Google Scholar
  5. 5.
    Ya.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, and D.M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003).CrossRefGoogle Scholar
  6. 6.
    A. Osinsky, J.W. Dong, M.Z. Kauser, B. Hertog, A.M. Dabiran, P.P. Chow, S.J. Pearton, O. Lopatiuk, and L. Chernyak, Appl. Phys. Lett. 85, 4272 (2004).CrossRefGoogle Scholar
  7. 7.
    A. Tsukazaki et al., Nat. Mater. 4, 42 (2005).CrossRefGoogle Scholar
  8. 8.
    J.F. Wager, Science 300, 1245 (2003).CrossRefGoogle Scholar
  9. 9.
    R.L. Hoffman, J. Appl. Phys. 95, 5813 (2004).CrossRefGoogle Scholar
  10. 10.
    E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.P.G. Pimental, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater. 17, 590 (2005).CrossRefGoogle Scholar
  11. 11.
    A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, Phys. Rev. B: Condens. Matter Mater. Phys. 61, 15019 (2000).Google Scholar
  12. 12.
    S.B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B: Condens. Matter Mater. Phys. 63, 075205 (2001).Google Scholar
  13. 13.
    F. Oba, S.R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, J. Appl. Phys. 90, 824 (2001).CrossRefGoogle Scholar
  14. 14.
    D.C. Look and J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).CrossRefGoogle Scholar
  15. 15.
    C.G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).CrossRefGoogle Scholar
  16. 16.
    D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C. Harsch, Solid State Commun. 105, 399 (1998).CrossRefGoogle Scholar
  17. 17.
    ZN Technology, 910 Columbia Street, Brea, CA 92821.Google Scholar
  18. 18.
    S.F.J. Cox et al., Phys. Rev. Lett. 86, 2601 (2001).CrossRefGoogle Scholar
  19. 19.
    D.M. Hofmann, A. Hofstaetter, F. Leiter, H.J. Zhou, F. Henecker, B.K. Meyer, S.B. Orlinskii, J. Schmidt, and P.G. Baranov, Phys. Rev. Lett. 88, 045504 (2001).CrossRefGoogle Scholar
  20. 20.
    K. Shimomura, K. Nishiyama, and R. Kadono, Phys. Rev. Lett. 89, 255505 (2002).CrossRefGoogle Scholar
  21. 21.
    N.H. Nickel and K. Fleischer, Phys. Rev. Lett. 90, 197402 (2003).CrossRefGoogle Scholar
  22. 22.
    K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E. Stutz, B. Luo, F. Ren, D.C. Look, and J.M. Zavada, Appl. Phys. Lett. 82, 385 (2003).CrossRefGoogle Scholar
  23. 23.
    Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, N.Y. Garces, N.C. Giles, L.E. Halliburton, S. Niki, and L.J. Brillson, Appl. Phys. Lett. 84, 2545 (2004).CrossRefGoogle Scholar
  24. 24.
    D.C. Look, G.C. Farlow, S. Limpijumnong, S.B. Zhang, and K. Nordlund, Phys. Rev. Lett. 95, 225502 (2005).CrossRefGoogle Scholar
  25. 25.
    D.C. Look, Electrical Characterization of GaAs Materials and Devices (New York: Wiley, 1989), Chap. 1.Google Scholar
  26. 26.
    P. Erhart, K. Albe, N. Juslin, and K. Nordlund, unpublished.Google Scholar
  27. 27.
    Y.-S. Kang, H.-Y. Kim, and J.-Y. Lee, J. Electrochem. Soc. 147, 4625 (2000).CrossRefGoogle Scholar
  28. 28.
    B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, and A.V. Rodina, Phys. Status Solidi 241b, 231 (2004).CrossRefGoogle Scholar
  29. 29.
    N.H. Nickel and K. Fleischer, Phys. Rev. Lett. 90, 197402 (2003).CrossRefGoogle Scholar
  30. 30.
    D.C. Look, R.L. Jones, J.R. Sizelove, N.Y. Garces, N.C. Giles, and L.E. Halliburton, Phys. Status Solidi 195a, 171 (2003).Google Scholar
  31. 31.
    D.C. Look, H.L. Mosbacker, Y.M. Strzhemechny, and L.J. Brillson, Superlattices and Microstructures 38, 406 (2005).CrossRefGoogle Scholar
  32. 32.
    C.H. Park, S.B. Zhang, and S.H. Wei, Phys. Rev. B: Condens. Matter Mater. Phys. 66, 073202 (2002).Google Scholar
  33. 33.
    M.G. Wardle, J.P. Goss, and P.R. Briddon, Phys. Rev. B: Condens. Matter Mater. Phys. 71, 155205 (2005).Google Scholar
  34. 34.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).CrossRefGoogle Scholar
  35. 35.
    X.S. Wang, Z.C. Wu, J.F. Webb, and Z.G. Liu, Appl. Phys. A 77, 561 (2003).CrossRefGoogle Scholar
  36. 36.
    K.-K. Kim, S. Niki, J.-Y. Oh, J.-O. Song, T.-Y. Seong, S.-J. Park, S. Fujita, and S.-W. Kim, J. Appl. Phys. 97, 066013 (2005).Google Scholar
  37. 37.
    T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 85, 759 (2004).CrossRefGoogle Scholar
  38. 38.
    S. Limpijumnong, X. Li, S.-H. Wei, and S.B. Zhang, Appl. Phys. Lett. 86, 211910 (2005).CrossRefGoogle Scholar
  39. 39.
    G. Cantwell and Z.N. Technology, private communication.Google Scholar
  40. 40.
    W.E. Carlos, E.R. Glaser, and D.C. Look, Phys. B 308–310, 976 (2001).CrossRefGoogle Scholar
  41. 41.
    N.Y. Garces, N.C. Giles, L.E. Halliburton, G. Cantwell, D.B. Eason, D.C. Reynolds, and D.C. Look, Appl. Phys. Lett. 80, 1334 (2002).CrossRefGoogle Scholar
  42. 42.
    C.H. Seager and S.M. Myers, J. Appl. Phys. 94, 2888 (2003).CrossRefGoogle Scholar
  43. 43.
    L.E. Halliburton, L. Wang, L. Bai, N.Y. Garces, N.C. Giles, M.J. Callahan, and B. Wang, J. Appl. Phys. 96, 7168 (2004).CrossRefGoogle Scholar
  44. 44.
    D.C. Look, B. Claflin, Ya.I. Alivov, and S.J. Park, Phys. Status Solidi a 201, 2203 (2004).CrossRefGoogle Scholar
  45. 45.
    T.M. Barnes, K. Olson, and C.A. Wolden, Appl. Phys. Lett. 86, 112112 (2005).CrossRefGoogle Scholar
  46. 46.
    Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, and H.W. White, J. Cryst. Growth 216, 330 (2000).CrossRefGoogle Scholar
  47. 47.
    K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003).CrossRefGoogle Scholar
  48. 48.
    D.C. Look, G.M. Renlund, R.H. Burgener II, and J.R. Sizelove, Appl. Phys. Lett. 85, 5269 (2004).CrossRefGoogle Scholar
  49. 49.
    F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, and J.L. Liu, Appl. Phys. Lett. 87, 152101 (2005).CrossRefGoogle Scholar
  50. 50.
    S. Limpijumnong, S.B. Zhang, S.-H. Wei, and C.H. Park, Phys. Rev. Lett. 92, 155504 (2004).CrossRefGoogle Scholar
  51. 51.
    U. Wahl, E. Rita, J.G. Groves, A.C. Marques, E. Alves, and J.C. Soares, Phys. Rev. Lett 95, 215503 (2005).CrossRefGoogle Scholar
  52. 52.
    F. Tuomisto, I. Makkonen, M.J. Puska, K. Saarinen, D.C. Look, G.M. Renlund, and R.H. Burgener II, Superlattices Microstruct. in press.Google Scholar
  53. 53.
    D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, T.C. Collins, W. Harsch, and G. Cantwell, Phys. Rev. B: Condens. Matter Mater. Phys. 57, 12151 (1998).Google Scholar
  54. 54.
    A. Guillén-Santiago, M. de la L. Olvera, A. Maldonado, R. Asomoza, and D.R. Acosta, Phys. Status Solidi a 201, 952 (2004).CrossRefGoogle Scholar
  55. 55.
    P.M. Ratheesh Kumar, C. Sudha Kartha, K.P. Vijayakumar, F. Singh, and D.K. Avasthi, Mater. Sci. Eng., B 117, 307 (2005).CrossRefGoogle Scholar
  56. 56.
    D.C. Look, D.C. Reynolds, J.W. Hemsky, R.L. Jones, and J.R. Sizelove, Appl. Phys. Lett. 75, 811 (1999).CrossRefGoogle Scholar
  57. 57.
    P. Kasai, Phys. Rev. 130, 989 (1963).CrossRefGoogle Scholar
  58. 58.
    F. Tuomisto, K. Saarinen, D.C. Look, and G.C. Farlow, Phys. Rev. B: Condens. Matter Mater. Phys. 72, 085206 (2005).Google Scholar
  59. 59.
    F. Tuomisto, K. Saarinen, and D.C. Look, Phys. Rev. Lett. 91, 205502 (2003).CrossRefGoogle Scholar
  60. 60.
    Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000).CrossRefGoogle Scholar
  61. 61.
    H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, and J. Lin, Appl. Phys. Lett. 86, 243503 (2005).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • David C. Look
    • 1
    • 2
  1. 1.Semiconductor Research CenterWright State UniversityDayton
  2. 2.Materials and Manufacturing DirectorateAir Force Research Laboratory, Wright-Patterson Air Force Base

Personalised recommendations