Journal of Electronic Materials

, Volume 35, Issue 6, pp 1206–1213 | Cite as

Chemical polishing of CdZnTe substrates fabricated from crystals grown by the vertical-gradient freezing method

  • P. Moravec
  • P. Höschl
  • J. Franc
  • E. Belas
  • R. Fesh
  • R. Grill
  • P. Horodyský
  • P. Praus
Article

Abstract

Chemical polishing is a process of crucial importance in the manufacture of epiready substrates for molecular beam epitaxy (MBE) of high-quality HgCdTe layers. With the aim of fabrication of (211) CdZnTe substrates, we focused on the fundamental research of polishing processes with respect to reducing subsurface damage. Wafers of the orientation (211) were prepared from the as-grown crystals by a process flow including oriented slicing, several steps of mechanical polishing, and finally chemical polishing. In the prechemical polishing process, several free and bound abrasives were applied to reach the surface roughness close to 1 nm. The surface polishing treatment included testing of the surface quality after each polishing step. We used an interferometer profiler, which yields detailed surface maps. Within chemical polishing processing, we have looked for an optimum composition of etchant based on the bromine-methanol/ethylene glycol solution and adequate polishing pad. We studied the substrate surface quality dependence on the rotation speed of the plate, sample loading weights, and duration of polishing. Correlation between the final surface roughness and layer thickness removed was established. The chemical polishing with a very low concentration of Br-methanol/ethylene glycol solution was found to yield very good CdZnTe surfaces with a perfect flatness.

Key words

CdZnTe substrates chemical polishing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.E. Tennant, C.A. Cockrum, J.B. Gilpin, M.A. Kinch, M.B. Reine, and R.P. Ruth, J. Vac. Sci. Technol. B 10, 1359 (1992).CrossRefGoogle Scholar
  2. 2.
    S. Sen, C.S. Liang, D.R. Rhiger, J.E. Stannard, and H.F. Arlinghaus, J. Electron. Mater. 25, 1188 (1996).Google Scholar
  3. 3.
    S.L. Price, H.L. Hettich, S. Sen, M.C. Currie, D.R. Rhiger, and E.O. McLean, J. Electron. Mater. 27, 564 (1998).CrossRefGoogle Scholar
  4. 4.
    T. Asahi, O. Oda, Y. Taniguchi, and A. Koyama, J. Cryst. Growth 161, 20 (1996).CrossRefGoogle Scholar
  5. 5.
    Y.M. Ivanov, J. Cryst. Growth 194, 309 (1998).CrossRefGoogle Scholar
  6. 6.
    J. Franc, P. Moravec, P. Hlídek, E. Belas, P. Höschl, R. Grill, and Z. Šourek, J. Electron. Mater. 32, 761 (2003).CrossRefGoogle Scholar
  7. 7.
    R. Hirano and H. Kurita, Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, ed. P. Capper (Chichester: Wiley, 2005), pp. 241–267.Google Scholar
  8. 8.
    R. Singh, S. Velicu, J. Crocco, Y. Chang, J. Zhao, L.A. Almeida, J. Markunas, A. Kaleczyc, and J.H. Dinan, J. Electron. Mater. 34, 885 (2005).CrossRefGoogle Scholar
  9. 9.
    P. Horodyský, J. Franc, R. Grill, P. Hlídek, P. Moravec, J. Bok, and P. Höschl, J. Electron. Mater., in this issue.Google Scholar
  10. 10.
    W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, and H.F. Schaake, J. Electron. Mater. 24, 505 (1995).Google Scholar
  11. 11.
    R. Hirano, A. Hichiwa, H. Maeda, and T. Yamamoto, J. Electron. Mater. 29, 654 (2000).Google Scholar
  12. 12.
    J. Franc, P. Hlídek, P. Moravec, E. Belas, P. Höschl, L. Turjanska, and R. Varghová, Semicond. Sci. Technol. 15, 561 (2000).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • P. Moravec
    • 1
  • P. Höschl
    • 1
  • J. Franc
    • 1
  • E. Belas
    • 1
  • R. Fesh
    • 1
  • R. Grill
    • 1
  • P. Horodyský
    • 1
  • P. Praus
    • 1
  1. 1.Faculty of Mathematics and Physics, Institute of PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations