Advertisement

Journal of Electronic Materials

, Volume 35, Issue 8, pp L11–L14 | Cite as

Novel abrasive-free planarization of 4H-SiC (0001) using catalyst

  • Hideyuki Hara
  • Yasuhisa Sano
  • Hidekazu Mimura
  • Kenta Arima
  • Akihisa Kubota
  • Keita Yagi
  • Junji Murata
  • Kazuto Yamauch
Article

Abstract

A new abrasive-free planarization method for silicon carbide (SiC) wafers was proposed using the catalytic nature of platinum (Pt). We named it catalyst-referred etching (CARE). The setup equipped with a polishing pad made of Pt is almost the same as the lapping setup. However, CARE chemically removes SiC with an etching agent activated by a catalyst in contrast to mechanical removal by the lapping process. Hydrofluoric acid which is well known as an etchant of silicon dioxide (SiO2) that cannot etch SiC, was used as the source of the etching agent to SiC. The processed surfaces were observed by Nomarski differential interference contrast (NDIC) microscopy, atomic force microscopy (AFM), and optical interferometry. Those observations presented a marked reduction in surface roughness. Moreover, low-energy electron diffraction (LEED) images showed that a crystallographically well-ordered surface was realized.

Key words

Silicon carbide polishing etching catalyst hydrofluoric acid platinum 

References

  1. 1.
    W. Qian, M. Skowronski, G. Augustine, R.C. Glass, H.McD. Hobgood, and R.H. Hopkins, J. Electrochem. Soc. 142, 4290 (1995).CrossRefGoogle Scholar
  2. 2.
    J.A. Powell and D.J. Larkin, Phys. Status Solidi B 202, 529 (1997).CrossRefGoogle Scholar
  3. 3.
    L. Zhou, V. Audurier, P. Pirouz, and J.A. Powell, J. Electrochem. Soc. 144, L161 (1997).Google Scholar
  4. 4.
    M. Kikuchi, Y. Takahashi, T. Suga, S. Suzuki, and Y. Bando, J. Am. Ceram. Soc. 75, 189 (1992).CrossRefGoogle Scholar
  5. 5.
    C. Li, I.B. Bhat, R. Wang, and J. Seiler, J. Electron. Mater. 33, 481 (2004).CrossRefGoogle Scholar
  6. 6.
    F. Owman, C. Hallin, P. Martensson, and E. Janzen, J. Cryst. Growth 167, 391 (1996).CrossRefGoogle Scholar
  7. 7.
    C. Hallen, F. Owman, P. Martensson, A. Ellison, A. Konstantinov, O. Kordina, and E. Janzen, J. Cryst. Growth 181, 241 (1997).CrossRefGoogle Scholar
  8. 8.
    F.T. Wagner and P.N. Ross, Jr., J. Electroanal. Chem. 250, 301 (1988).CrossRefGoogle Scholar
  9. 9.
    A. Kubota, H. Mimura, K. Inagaki, K. Arima, Y. Mori, and K. Yamauchi, J. Electron. Mater. 34, 439 (2005).CrossRefGoogle Scholar
  10. 10.
    Y. Ichii, Y. Mori, K. Hirose, K. Endo, K. Yamauchi, and H. Goto, Electrochemica Acta 50, 5379 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, Rev. Sci. Instrum. 71, 4627 (2000).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Hideyuki Hara
    • 1
  • Yasuhisa Sano
    • 1
  • Hidekazu Mimura
    • 1
  • Kenta Arima
    • 1
  • Akihisa Kubota
    • 2
  • Keita Yagi
    • 3
  • Junji Murata
    • 1
  • Kazuto Yamauch
    • 1
  1. 1.Department of Precision Science & Technology, Graduate School of EngineeringOsaka UniversityOsakaJapan
  2. 2.Department of Mechanical Engineering and Materials ScienceKumamoto UniversityKumamotoJapan
  3. 3.Research Center for Ultra-Precision Science and Technology, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations