Advertisement

Journal of Electronic Materials

, Volume 35, Issue 1, pp 170–172 | Cite as

Ultrathin CdSe nanowire field-effect transistors

  • Anubhav Khandelwal
  • Debdeep Jena
  • James W. Grebinski
  • Katherine Leigh Hull
  • Masaru K. Kuno
Article

Abstract

We report the fabrication, and electrical and optical characterization, of solution-liquid-solid (SLS) grown CdSe nanowire field-effect transistors. Ultrathin nanowires (7–12 nm diameters) with lengths between 1 µm and 10 µm were grown by the SLS technique. Al-CdSe-Al junctions are then defined over oxidized Si substrate using photolithography. The nanowires, which were very resistive in the dark, showed pronounced photoconductivity even with a visible light source with resistance decreasing by a factor of 2–100 for different devices. Field-effect devices fabricated by a global backgating technique showed threshold voltages between −7.5 V and −2.5 V and on-to-off channel current ratios between 103 and 106 at room temperature. Channel current modulation with gate voltage is observed with the current turning off for negative gate bias, suggesting unintentional n-type doping. Further, optical illumination resulted in the loss of gate control over the channel current of the field-effect transistor.

Key words

CdSe nanowire field-effect transistor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.T. Bjork, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg, and L. Samuelson, APL 81, 2 (2002).Google Scholar
  2. 2.
    X. Duan, Y. Huang, R. Agarwal, and C.M. Lieber, Nature 421, 241 (2003).CrossRefGoogle Scholar
  3. 3.
    S. Michotte, S.M. Tempfli, and L. Piraux, Physica C 391, 15 (2003).CrossRefGoogle Scholar
  4. 4.
    A.T. Tilke, F.C. Simmel, H. Lorenz, R.H. Blick, and J.P. Kotthaus, Phys. Rev. B: Condens. Matter Mater. Phys. 68, 075311 (2003).Google Scholar
  5. 5.
    K. Heike and M. Ulfward, Phys. Rev. B: Condens. Matter Mater. Phys. 62, 15 (2000).Google Scholar
  6. 6.
    D.J. Pena, K.N. Jeremiah, A.J. Carado, T.E. Mallouk, C.D. Keating, B. Razavi, and T.S. Mayer, J. Phys. Chem. B 106, 7458 (2002).CrossRefGoogle Scholar
  7. 7.
    X. Liang, J.L. Li, X. Liu, J-Z. Wang, H. Liu, Q. Xue, J. Jia, Surf. Interface Analysis 36, 100 (2004).CrossRefGoogle Scholar
  8. 8.
    Z. Zhong, F. Qian, D. Wang, and C.M. Lieber, Nano Lett. 3, 343 (2003).CrossRefGoogle Scholar
  9. 9.
    L.J. Lauhon, M.S. Gidiksen, D. Wang, and C.M. Lieber, Nature 420, 57 (2002).CrossRefGoogle Scholar
  10. 10.
    K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kaklbayashi, J. Appl. Phys. 77, 447 (1995).CrossRefGoogle Scholar
  11. 11.
    J.Y. Yu, S.W. Chung, and J.R. Heath, J. Phys. Chem. B 104, 11864 (2000).CrossRefGoogle Scholar
  12. 12.
    S. De Franceschia, J.A. van Dam, E.P.A.M. Bakkers, L.F. Feiner, L. Gurevich, and L.P. Kouwenhoven, APL 83, 14 (2003).Google Scholar
  13. 13.
    J.W. Grebinski, K.L. Richter, J. Zhang, T.H. Kosel, and M. Kuno, J. Phys. Chem. B 108, 9745 (2004).Google Scholar
  14. 14.
    R.A. Zingaro, W.C. Cooper, and V.N. Reinhold, eds., Selenium (1974), p. 123.Google Scholar
  15. 15.
    J. Guo, J. Wang, E. Polizzi, S. Dutta, and M. Lundstrom, IEEE Trans. Nanotechnol. 2, 329 (2003).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Anubhav Khandelwal
    • 1
  • Debdeep Jena
    • 1
  • James W. Grebinski
    • 2
  • Katherine Leigh Hull
    • 2
  • Masaru K. Kuno
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre Dame
  2. 2.Department of Chemistry & BiochemistryUniversity of Notre DameUSA

Personalised recommendations