Journal of Electronic Materials

, Volume 35, Issue 1, pp 41–47 | Cite as

Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems

  • Keun-Soo Kim
  • Toshinori Matsuura
  • Katsuaki Suganuma
Article

Abstract

The oxidation behavior of various Sn-Zn(-Bi) alloys during 60°C/90% and 85°C/85% relative humidity (RH) exposure were investigated by microstructure observation and x-ray diffraction analysis. The mechanical property of the joints of resistor chips (1608R) with two kinds of terminations, Sn and Sn-10Pb, soldered on a printed circuit board with Sn-Zn(-Bi) were evaluated by a shear test. The heat/humidity exposure of Sn-Zn alloys promotes segregation into the grain boundary accompanying oxidation of Zn resulting in the ZnO formation. This segregation induces serious degradation of alloys and Sn whisker growth. Heat/humidity exposure of 85°C/85%RH seriously decreases the shear strength of the surface mounted chip joints, especially Sn-Zn-Bi solder, due to the formation of ZnO at the interface between the solder and the reaction layer. The presence of Bi or Pb in Sn-Zn alloys enhances the diffusion, resulting in severe degradation at 85°C/85%RH exposure. In contrast, the exposure at 60°C/90%RH does not influence the joint strength for up to 1000 h. Under this condition, the oxidation of Zn only reaches a few microns in depth from the free surface.

Key words

Sn-Zn low temperature oxidation heat/humidity test lead-free solders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. McCormack and S. Jin, JOM 45, 36 (1993).Google Scholar
  2. 2.
    C. Melton, JOM 45, 33 (1993).Google Scholar
  3. 3.
    K. Suganuma, Y. Nakamura, and K. Nihara, J. Mater. Res. 13, 2859 (1998).Google Scholar
  4. 4.
    E.P. Wood and K.L. Nimmo, J. Electron. Mater. 23, 709 (1994).Google Scholar
  5. 5.
    M.E. Loomans, S. Vaynman, G. Gosh, and M.E. Fine, J. Electron. Mater. 23, 741 (1994).Google Scholar
  6. 6.
    K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, J. Mater. Res. 15, 884 (2000).Google Scholar
  7. 7.
    K.-S. Kim, Y.-S. Kim, K. Suganuma, and H. Nakajima, J. Jpn. Inst. Electron. Packaging 5, 666 (2002).Google Scholar
  8. 8.
    S.W. Yoon, W.K. Choi, and H.M. Lee, Scripta Mater. 40, 327 (1999).CrossRefGoogle Scholar
  9. 9.
    T. Kiga, S. Hattori, and Y. Iwanabe, J. Jpn. Inst. Electron. Packaging 6, 420 (2003).Google Scholar
  10. 10.
    M. Kitajima, T. Shono, T. Ogino, T. Kobayashi, K. Yamazaki, and M. Noguchi, J. Jpn. Inst. Electron. Packaging 6, 433 (2003).Google Scholar
  11. 11.
    K. Young-Sun, C.W. Hwang, and K. Suganuma, Proc. Int. Conf. on Electronics Packaging (2001 ICEP) (Tokyo, Japan: Japan Institute of Electronics Packaging/IMAPS, 2001), pp. 84–87.Google Scholar
  12. 12.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).CrossRefGoogle Scholar
  13. 13.
    U. Lindborg, Acta Metall. 24, 181 (1976).CrossRefGoogle Scholar
  14. 14.
    K.N. Tu, Phys. Rev. B: Condens. Matter Mater. Phys. 49, 2030 (1994).Google Scholar
  15. 15.
    K.N. Tu, Mater. Chem. Phys. 46, 217 (1996).CrossRefGoogle Scholar
  16. 16.
    B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).CrossRefGoogle Scholar
  17. 17.
    K.W. Moon, M.E. Williams, C.E. Johnson, and G.R. Stafford, C.A. Handwerker, and W.J. Boettinger, Proc. 4th Pacific Rim Int. Conf. on Advanced Materials and Processing (Sendai, Japan: Japan Institute of Metals, 2001), pp. 1115–1118.Google Scholar
  18. 18.
    R. Schety, Circ. World 27-2, 17 (2001).CrossRefGoogle Scholar
  19. 19.
    T. Nagai, K. Natori, and T. Furusawa, J. Jpn. Inst. Met. 53, 303 (1989).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Keun-Soo Kim
    • 1
  • Toshinori Matsuura
    • 1
  • Katsuaki Suganuma
    • 1
  1. 1.Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan

Personalised recommendations