Journal of Electronic Materials

, Volume 35, Issue 4, pp 733–737 | Cite as

Band offsets analysis of dilute nitride single quantum well structures employing surface photo voltage measurements

  • Massimo Galluppi
  • Lutz Geelhaar
  • Henning Riechert


The band offsets of InGaAsN single quantum well samples with different indium and nitrogen concentrations have been determined by surface photovoltage measurements. With varying indium content in the quantum well, both the conduction and the valence band states are modified. On the other hand, nitrogen content variations affect only the conduction band states and leave the valence band states basically unchanged. In particular, the value of the conduction band offset ratio increases with increasing nitrogen content and decreases with increasing indium concentration. This effect shows the possibility to design structures with a fixed band gap but varied confinement of electrons and holes by changing the In/N ratio.

Key words

Nitrides band offsets quantum wells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001) and references therein.CrossRefADSGoogle Scholar
  2. 2.
    Gh. Dumitras, H. Riechert, H. Porteanu, and F. Koch, Phys. Rev. B 66, 205324 (2002); Gh. Dumitras and H. Riechert, J. Appl. Phys. 94, 3955 (2003).CrossRefADSGoogle Scholar
  3. 3.
    M. Galluppi, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 86, 131925 (2005).CrossRefGoogle Scholar
  4. 4.
    M. Galluppi, L. Geelhaar, H. Riechert, M. Hetterich, A. Grau, S. Birner, and W. Stolz, Phys. Rev. B: Condens. Matter Mater. Phys. 72, 155324 (2005).ADSGoogle Scholar
  5. 5.
    A. Al-Yacoub and L. Bellaiche, Phys Rev. B 62, 10847 (2000); P.R.C. Kent and A. Zunger, Phys. Rev. Lett. 86, 2613 (2001).CrossRefADSGoogle Scholar
  6. 6.
    J.B. Perkins, A. Mascarenhas, Y. Zhang, J.F. Geisz, D.J. Friedman, J.M. Olson, and R.S. Kurtz, Phys. Rev. Lett. 82, 3312 (1999).CrossRefADSGoogle Scholar
  7. 7.
    W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, and R.S. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).CrossRefADSGoogle Scholar
  8. 8.
    S.A. Choulis, T.J.C. Hosea, S. Tomić, M. Kamal-Saadi, A.R. Adams, E.P. O’Reilly, B.A. Weinstein, and P.J. Klar, Phys. Rev. B: Condens. Matter Mater. Phys. 66, 165321 (2002).ADSGoogle Scholar
  9. 9.
    H.P. Xin and C.W. Tu, Appl. Phys. Lett. 72, 2442 (1998).CrossRefADSGoogle Scholar
  10. 10.
    P. Krispin, S.G. Sprytte, J.S. Harris, and K.H. Ploog, J. Appl. Phys. 88, 4153 (2000); I.A. Buyanova, G. Ponzina, P.N. Hai, W.M. Chen, H.P. Xin, and C.W. Tu. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 033303 (2000).CrossRefADSGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Massimo Galluppi
    • 1
  • Lutz Geelhaar
    • 1
  • Henning Riechert
    • 1
  1. 1.Infineon Technologies, Corporate ResearchMunichGermany

Personalised recommendations