Advertisement

Journal of Electronic Materials

, Volume 35, Issue 4, pp 663–669 | Cite as

Electrical properties of undoped bulk ZnO substrates

  • A. Y. Polyakov
  • N. B. Smirnov
  • A. V. Govorkov
  • E. A. Kozhukhova
  • S. J. Pearton
  • D. P. Norton
  • A. Osinsky
  • Amir Dabiran
Article

Abstract

Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5×104)−(3×105) Ohm cm) or low n-type conductivity (n ⋍1014 cm−3) with mobilities in the latter case of 130–150 cm2/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2×1015 cm−3, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at Ec −0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples.

Key words

ZnO bulk crystals electron traps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.P. Kuz’mina and V.A. Nikitenko, Zinc Oxide: Growth and Optical Properties (Nauka, Moscow, 1984) (in Russian).Google Scholar
  2. 2.
    D.C. Look, B. Claflin, Ya.I. Alivov, and S.J. Park, Phys. Status Solidi (a) 201, 2203 (2004).CrossRefADSGoogle Scholar
  3. 3.
    D.C. Look, Mater. Sci. Eng. B80, 383 (2001).CrossRefGoogle Scholar
  4. 4.
    N. Shibata, T. Uemura, H. Yamaguchi, and T. Yasukawa, Phys. Status Solidi (a) 200, 58 (2003).CrossRefADSGoogle Scholar
  5. 5.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).CrossRefGoogle Scholar
  6. 6.
    Ya.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, and D.M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003).CrossRefADSGoogle Scholar
  7. 7.
    Ya.I. Alivov, J.E. Van Nostrand, D.C. Look, M.V. Chukichev, and B.M. Ataev, Appl. Phys. Lett. 83, 2943 (2003).CrossRefADSGoogle Scholar
  8. 8.
    A. Osinsky, J.W. Dong, M.Z. Kauser, B. Hertog, A.M. Dabiran, P.P. Chow, S.J. Pearton, O. Lopatiuk, and L. Chernyak, Appl. Phys. Lett. 85, 4272 (2004).CrossRefADSGoogle Scholar
  9. 9.
    O. Lopatiuk, W. Burdett, L. Chernyak, K.P. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, B. Hertog, P.P. Chow, and A. Osinsky, Appl. Phys. Lett. 86, 012105 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Polyakov, N. Smirnov, E. Kozhukhova, V. Vdovin, K. Ip, Y.W. Heo, D.P. Norton, and S.J. Pearton, Appl. Phys. Lett. 83, 1575 (2003).CrossRefADSGoogle Scholar
  11. 11.
    D.-K. Hwang, S.-H. Kang, J.-H. Lim, E.-J. Yang, J.-Y. Oh, J.-H. Yang, and S.-J. Park, Appl. Phys. Lett. 86, 222101 (2005).CrossRefGoogle Scholar
  12. 12.
    T.-H. Moon, M.-C. Jeong, W. Lee, and J.-M. Myoung, Appl. Surf. Sci. 240, 280 (2005).CrossRefADSGoogle Scholar
  13. 13.
    A. Tsukazaki et al., Nat. Mater. 4, 42 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Kim, B. Kang, F. Ren, Y. Heo, K. Ip, D.P. Norton, and S.J. Pearton, Appl. Phys. Lett. 84, 1904 (2004).CrossRefADSGoogle Scholar
  15. 15.
    J.H. Lim, K.K. Kim, D.K. Hwang, H.K. Kim, J.H. Oh, and S.J. Park, J. Electrochem. Soc. 152, G179 (2005).Google Scholar
  16. 16.
    H. Sheng, N.W. Emanetoglu, S. Muthukumar, S. Feng, and Y. Lu, J. Electron. Mater. 31, 811 (2002).CrossRefGoogle Scholar
  17. 17.
    A. Polyakov, N. Smirnov, E. Kozhukhova, V. Vdovin, K. Ip, Y.W. Heo, D.P. Norton, and S.J. Pearton, Appl. Phys. Lett. 83, 1575 (2003).CrossRefADSGoogle Scholar
  18. 18.
    K. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, J.R. LaRoche, and F. Ren, Appl. Phys. Lett. 85, 1169 (2004).CrossRefADSGoogle Scholar
  19. 19.
    M. Wraback, H. Shen, S. Liang, C.R. Gorla, and Y. Lu, Appl. Phys. Lett. 76, 507 (1999).CrossRefGoogle Scholar
  20. 20.
    T. Aoki, D.C. Look, and Y. Hatanaka, Appl. Phys. Lett. 76, 3257 (2000).CrossRefADSGoogle Scholar
  21. 21.
    S. Krishnamoorthy, A.A. Iliadis, A. Inumpudi, S. Choopun, R.D. Vispute, and T. Venkatesan, Solid-State Electron. 46, 1631 (2002).CrossRefGoogle Scholar
  22. 22.
    J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, Appl. Phys. Lett. 78, 3842 (2001).CrossRefADSGoogle Scholar
  23. 23.
    A.A. Iliadis, R.D. Vispute, T. Venkatesan, and K.A. Jones, Thin Solid Films 420–421, 478 (2002).CrossRefGoogle Scholar
  24. 24.
    A. Inumpudi, A.A. Iliadis, S. Krishnamoorthy, S. Choopun, R.D. Vispute, and T. Venkatesan, Solid-State Electron. 46, 1665 (2002).CrossRefGoogle Scholar
  25. 25.
    H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, J. Appl. Phys. Lett. 77, 1647 (2000).CrossRefADSGoogle Scholar
  26. 26.
    H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, J. Electrochem. Soc. 148, G114 (2001).Google Scholar
  27. 27.
    H. Sheng, N.W. Emanetoglu, S. Muthukumar, S. Feng, and Y. Lu, J. Electron. Mater. 31, 811 (2002).CrossRefGoogle Scholar
  28. 28.
    H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, and Y. Lu, J. Electron. Mater. 32, 935 (2003).CrossRefGoogle Scholar
  29. 29.
    H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seong, and I. Adesida, J. Appl. Phys. 94, 4225 (2003).CrossRefADSGoogle Scholar
  30. 30.
    S.Y. Kim, H.W. Jang, J.K. Kim, C.M. Jeon, W.I. Park, G.C. Yi, and J.-L. Lee, J. Electron. Mater. 31, 868 (2002).CrossRefGoogle Scholar
  31. 31.
    N. Ohashi, J. Tanaka, T. Ohgaki, H. Haneda, M. Ozawa, and T. Tsurumi, J. Mater. Res. 17, 1529 (2002).Google Scholar
  32. 32.
    H. Sheng, S. Muthukumar, N.W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).CrossRefADSGoogle Scholar
  33. 33.
    F.D. Auret, S.A. Goodman, M. Hayes, M.J. Legodi, and H.A. van Laarhoven, Appl. Phys. Lett. 79, 3074 (2001).CrossRefADSGoogle Scholar
  34. 34.
    B.J. Coppa, R.F. Davis, and R.J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).CrossRefADSGoogle Scholar
  35. 35.
    Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000).CrossRefGoogle Scholar
  36. 36.
    A.Y. Polyakov, N. Smirnov, E. Kozhukhova, V. Vdovin, K. Ip, Y.W. Heo, D.P. Norton, and S.J. Pearton, Appl. Phys. Lett. 83, 1575 (2003).CrossRefADSGoogle Scholar
  37. 37.
    K. Ip, K. Baik, Y.W. Heo, D.P. Norton, S.J. Pearton, J.R. LaRoche, F. Ren, and J.M. Zavada, J. Vac. Sci. Technol. B 21, 2378 (2003).CrossRefGoogle Scholar
  38. 38.
    See, for example: J.M.D. Coey, M. Venkatesan, and C.B. Fitzgerald, Nat. Mater. 4, 173 (2005) and references therein; M. Venkatesan, C.B. Fitzgerald, and J.M.D. Coey, Nature 430, 630 (2004); J.M.D. Coey, J. Appl. Phys. 97, 10D313 (2005).PubMedCrossRefGoogle Scholar
  39. 39.
    K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002).CrossRefADSGoogle Scholar
  40. 40.
    T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, and M. Kawasaki, Appl. Surf. Sci. 223, 62 (2004).CrossRefADSGoogle Scholar
  41. 41.
    S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).Google Scholar
  42. 42.
    E.V. Kortounova, N.G. Nikolaeva, P.P. Chvanski, and B.A. Dorogovin, 2nd International Workshop on Zinc Oxide, ed. D.C. Look (Warrendale, PA: MRS, 2002).Google Scholar
  43. 43.
    J.W. Kolis, E. Michaels, P. Hartlieb, and Z. Sitar, 2nd International Workshop on Zinc Oxide, ed. D.C. Look, (Warrendale, PA: MRS, 2002).Google Scholar
  44. 44.
    E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, J. Cryst. Growth 260, 166 (2004).CrossRefGoogle Scholar
  45. 45.
    A. Polyakov et al., J. Appl. Phys. 94, 2895 (2003).CrossRefADSGoogle Scholar
  46. 46.
    A.Y. Polyakov et al., J. Appl. Phys. 94, 400 (2003).CrossRefADSGoogle Scholar
  47. 47.
    Y.M. Strzhemechny et al., J. Electron. Mater. 34, 399 (2005).CrossRefGoogle Scholar
  48. 48.
    B.I. Shklovsky and A.L. Efros, Electronic Properties of Doped Semiconductors (Moscow: Nauka, 1979) (in Russian).Google Scholar
  49. 49.
    A. Dissanayake, M. Elahi, H.X. Jiang, and J.Y. Lin, Phys. Rev. B45, 13996 (1992).ADSGoogle Scholar
  50. 50.
    J.Y. Lin, A. Dissanayake, G. Brown, and H.X. Jiang, Phys. Rev. B42, 5855 (1990).ADSGoogle Scholar
  51. 51.
    L.S. Berman and A.A. Lebedev, Capacitance Spectroscopy of Deep Centers in Semiconductors (Leningrad: Nauka, 1981) (in Russian).Google Scholar
  52. 52.
    A.G. Milnes, Deep Impurities in Semiconductors (New York: Wiley, 1980).Google Scholar
  53. 53.
    A.Y. Polyakov et al., J. Vac. Sci. Technol., B 23, 274 (2005).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • A. Y. Polyakov
    • 1
  • N. B. Smirnov
    • 1
  • A. V. Govorkov
    • 1
  • E. A. Kozhukhova
    • 1
  • S. J. Pearton
    • 2
  • D. P. Norton
    • 2
  • A. Osinsky
    • 3
  • Amir Dabiran
    • 3
  1. 1.Institute of Rare MetalsMoscowRussia
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesville
  3. 3.SVT AssociatesEden Prairie

Personalised recommendations