Advertisement

Journal of Electronic Materials

, Volume 35, Issue 4, pp 543–549 | Cite as

Trap-related photoconductivity in ZnO epilayers

  • T. E. Murphy
  • K. Moazzami
  • J. D. Phillips
Article

Abstract

A strong photoconductive response is observed for ZnO epilayers in the presence of both above bandgap and below bandgap photoexcitation. Photoexcitation for energies larger than the bandgap results in a photoconductive response with fast and slow time constants on the order of nanoseconds and larger than milliseconds, respectively. The fast and slow time constants are attributed to minority carrier recombination and slow escape of holes from traps, respectively. Photoexcitation in the visible spectral region, below the bandgap energy, results in slow rise and fall time constants on the order of minutes and hours. A model for the photoconductive response based on rate equations is presented providing an accurate fit to measured photoconductivity data. The rate equation model suggests the presence of hole trap levels in the energy range of 0.6 eV to 1.0 eV relative to the valence bandedge. The passivation of the ZnO surface with SiO2 shows significantly reduced photoconductive transient decay time constants, suggesting a significant reduction of deep surface defects on the ZnO material.

Key words

ZnO persistent photoconductivity trap level trap density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Yaron, Y. Goldstein, A. Many, S.Z. Weisz, and O. Resto, J. Phys. Chem. Solids 49, 887 (1988).CrossRefGoogle Scholar
  2. 2.
    R.J. Collins and D.G. Thomas, Phys. Rev. 112, 388 (1958).CrossRefADSGoogle Scholar
  3. 3.
    A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumin. 90, 123 (2000).CrossRefGoogle Scholar
  4. 4.
    D.C. Reynolds, D.C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).CrossRefADSGoogle Scholar
  5. 5.
    D.C. Look, Semicond. Sci. Technol. 20, 55 (2005).CrossRefGoogle Scholar
  6. 6.
    A.N. Mariano and R.E. Hanneman, J. Appl. Phys. 34, 384 (1963).CrossRefGoogle Scholar
  7. 7.
    T.E. Murphy, J.O. Blaszczak, K. Moazzami, W.E. Bowen, and J.D. Phillips, J. Electron. Mater. 34, 389 (2005).CrossRefGoogle Scholar
  8. 8.
    A. Shimizu, M. Kanbara, M. Hada, and M. Kasuga, Jpn. J. Appl. Phys. 17, 1435 (1978).CrossRefADSGoogle Scholar
  9. 9.
    T.E. Murphy, D.Y. Chen, and J.D. Phillips, J. Electron. Mater. 34, 699 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Lany and A. Zunger, Phys. Rev. B: Condens. Matter Mater. Phys. 72, 035215 (2005).ADSGoogle Scholar
  11. 11.
    M. Salis, A. Anedda, F. Quarati, A.J. Blue, and W. Cunningham, J. Appl. Phys. 97, 033709 (2005).CrossRefGoogle Scholar
  12. 12.
    S.J. Chung, O.H. Cha, Y.S. Kim, C.-H. Hong, H.J. Lee, M.S. Jeong, J.O. White, and E.-K. Suh, J. Appl. Phys. 89, 5454 (2001).CrossRefADSGoogle Scholar
  13. 13.
    K. Moazzami, T.E. Murphy, J.D. Phillips, M. Cheung, and A. N. Cartwright, Semi. Sci. Tech. (in press).Google Scholar
  14. 14.
    B. Lin, J. Electrochem. Soc. 148, G110 (2001).Google Scholar
  15. 15.
    D.C. Reynolds, D.C. Look, B. Jogai, J.E. Van Nostrand, R. Jones, and J. Jenny, Solid State Comm. 106, 701 (1998).CrossRefGoogle Scholar
  16. 16.
    H.-J. Egalhaaf and D. Oelkrug, J. Cryst. Growth 161, 190 (1996).CrossRefGoogle Scholar
  17. 17.
    P. Sharma, K. Sreenivas, and K.V. Rao, J. Appl. Phys. 93, 3963 (2003).CrossRefADSGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • T. E. Murphy
    • 1
  • K. Moazzami
    • 1
  • J. D. Phillips
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceThe University of MichiganAnn Arbor

Personalised recommendations