Journal of Electronic Materials

, Volume 36, Issue 4, pp 426–430 | Cite as

Comparison of GaN and In0.04Ga0.96N p-Layers on the Electrical and Electroluminescence Properties of Green Light Emitting Diodes

  • J. B. Limb
  • W. Lee
  • J. H. Ryou
  • D. Yoo
  • R. D. Dupuis
Special Issue Paper

We have compared the effects of Mg-doped GaN and In0.04Ga0.96N layers on the electrical and electroluminescence (EL) properties of the green light emitting diodes (LEDs). To investigate the effects of different p-layers on the LED performance, the diode active region structures were kept identical. For LEDs with p-InGaN layers, the p-In0.04Ga0.96N/GaN polarization-related EL peak was dominant at low current levels, while the multiple-quantum-well (MQW) peak became dominant at higher current levels, different from LEDs with p-GaN layers. Also, LEDs with p-InGaN exhibited slightly higher turn on voltages (V on ) and forward voltages (V f ) compared to LEDs with p-GaN layers. However, the MQW related EL intensity was much higher and diode series resistance lower for LEDs with p-InGaN layers compared with LEDs with p-GaN, showing possible improvements in output power for LEDs with p-InGaN layers. The diodes with p-GaN layers typically showed V f of ∼3.1 V at a drive current of 20 mA, with a series resistance of ∼24.7 Ω, while diodes with p-InGaN showed V f of ∼3.2 V, with a series resistance of ∼18.5 Ω, for device dimensions of 230 μm by 230 μm.

Keywords

Light emitting diode (LED) gallium nitride (GaN) metalorganic chemical vapor deposition (MOCVD) InGaN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Krames (2003 DOE Solid State Lighting Program Planning Workshop, Washington, DC, Nov. 13–14, 2003); http://www.netl.doe.gov/ssl/materials.html
  2. 2.
    F.A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, S. Tanaka, Phys. Status Solidi B 240, 273 (2003)CrossRefGoogle Scholar
  3. 3.
    A. Hangleiter, J.S. Im, H. Colmer, S. Heppel, J. Off, S. Scholz, MRS Internet J. Nitride Semiconduct. Res. 3, 15 (1998)Google Scholar
  4. 4.
    M.D. McCluskey, L.T. Romano, B.S. Krusor, N.M. Johnson, T. Suski, J. Jun, Appl. Phys. Lett. 73, 1281 (1998)CrossRefGoogle Scholar
  5. 5.
    M.D. McCluskey, L.T. Romano, B.S. Krusor, D.P. Bohr, N.M. Johnson, S. Brennan, Appl. Phys. Lett. 72, 1730 (1998)CrossRefGoogle Scholar
  6. 6.
    C.C. Chou, C.M. Lee, J.I. Chyi, Appl. Phys. Lett. 78, 314 (2001)CrossRefGoogle Scholar
  7. 7.
    Wonseok Lee, Jae Limb, Jae-Hyun Ryou, Dongwon Yoo, Theodore Chung, Russell Dupuis, J. Cryst. Growth 287, 577 (2006)CrossRefGoogle Scholar
  8. 8.
    Wonseok Lee, Jae Limb, Jae-Hyun Ryou, Dongwon Yoo, Theodore Chung, Russell Dupuis, J. Electron. Mater. 35, 587 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Kitamura, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 34, L184 (1995)CrossRefGoogle Scholar
  10. 10.
    Thomas Swan Scientific Equipment Ltd. Model 7 × 2 CCSGoogle Scholar
  11. 11.
    X.H. Wu, C.R. Elsass, A. Abare, M. Mack, S. Keller, P.M. Petroff, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 72, 692 (1998)CrossRefGoogle Scholar
  12. 12.
    C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J.S. Nelson, Appl. Phys. Lett. 85, 866 (2004)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • J. B. Limb
    • 1
  • W. Lee
    • 1
  • J. H. Ryou
    • 1
  • D. Yoo
    • 1
    • 2
  • R. D. Dupuis
    • 1
    • 2
  1. 1.Center for Compound Semiconductors and School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations