Advertisement

Journal of Electronic Materials

, Volume 36, Issue 4, pp 414–419 | Cite as

X-Ray Photoelectron Spectroscopy Characterization of Aluminum Nitride Surface Oxides: Thermal and Hydrothermal Evolution

  • R. DalmauEmail author
  • R. Collazo
  • S. Mita
  • Z. Sitar
Special Issue Paper

Abstract

Oxidized surfaces of aluminum nitride (AlN) epilayers grown on sapphire substrates and of AlN bulk crystals grown by physical vapor transport were studied by x-ray photoelectron spectroscopy (XPS). Analysis of the oxygen core level spectra showed approximately equal contributions from oxygen in two bonding states, which were identified by the binding energies and relative separation of the fitted peaks as OH and O2−. The oxide on air-exposed AlN surfaces was identified as aluminum oxide hydroxide. Systematic annealing experiments were conducted in vacuum to study the thermal evolution of hydroxide layers, and a dehydration mechanism resulting in the formation of Al2O3 at high temperature was identified.

Keywords

Aluminum nitride (AlN) aluminum hydroxides alumina x-ray photoelectron spectroscopy (XPS) oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project was funded by the Office of Naval \Research under the auspices of the MURI program, Grant No. N00014-01-0716, Dr. Colin Wood, project monitor. We thank D. Zhuang and Z. Herro for providing bulk AlN samples.

References

  1. 1.
    Liu L., Edgar J.H. (2002) Mater. Sci. Eng. R 37:61Google Scholar
  2. 2.
    Slack G.A., McNelly T.F. (1976) J. Cryst. Growth 34:263CrossRefGoogle Scholar
  3. 3.
    K. Wefers, and C. Misra (1987) Oxides and Hydroxides of Aluminum, Alcoa Technical Paper No. 19, Revised Pittsburgh, PA: ALCOA LaboratoriesGoogle Scholar
  4. 4.
    Digne M., Sautet P., Raybaud P., Toulhoat H., Artacho E. (2002) J. Phys. Chem. B106:5155Google Scholar
  5. 5.
    Sato T. (1985) Thermochimica Acta 88:69CrossRefGoogle Scholar
  6. 6.
    Fukumoto S., Hookabe T., Tsubakino H. (2000) J. Mater. Sci. 35:2743CrossRefGoogle Scholar
  7. 7.
    Gu Z., Edgar J.H., Speakman S.A., Blom D., Perrin J., Chaudhuri J. (2005) J. Electron. Mater. 34:1271CrossRefGoogle Scholar
  8. 8.
    King S.W., Barnak J.P., Bremser M.D., Tracy K.M., Ronning C., Davis R.F., Nemanich R.J. (1998) J. Appl. Phys. 84:5428Google Scholar
  9. 9.
    Abid A., Bensalem R., Sealy J. (1986) J. Mater. Sci. 21:1301CrossRefGoogle Scholar
  10. 10.
    Bowen P., Highfield J.G., Mocellin A., Ring T.A. (1990) J. Am. Ceram. Soc. 73:724CrossRefGoogle Scholar
  11. 11.
    Svedberg L.M., Arndt K.C., Cima M.J. (2006) J. Am. Ceram. Soc. 83:41CrossRefGoogle Scholar
  12. 12.
    Li J., Nakamura M., Shirai T., Matsumaru K., Ishikazi C., Ishikazi K. (2006) J. Am. Ceram. Soc. 89:937CrossRefGoogle Scholar
  13. 13.
    Liao H.M., Sodhi R.N.S., Coyle T.W. (1993) J. Vac. Sci. Technol. A 11:2681Google Scholar
  14. 14.
    Ambacher O. (1998) J. Phys. D 31:2653Google Scholar
  15. 15.
    Nikishin S.A., Borisov B.A., Chandolu A., Kuryatkov V.V., Temkin H., Holtz M., Mokhov E.N., Makarov Y., Helava H. (2004) Appl. Phys. Lett. 85:4355CrossRefGoogle Scholar
  16. 16.
    Herro Z.G., Zhuang D., Schlesser R., Collazo R., Sitar Z. (2006) J. Cryst. Growth 286:205CrossRefGoogle Scholar
  17. 17.
    Zhuang D., Herro Z.G., Schlesser R., Sitar Z. (2006) J. Cryst. Growth 287:372CrossRefGoogle Scholar
  18. 18.
    Noveski V., Schlesser R., Mahajan S., Beaudoin S., Sitar Z. (2004) J. Cryst. Growth 264:369CrossRefGoogle Scholar
  19. 19.
    J.F. Moulder, W.F. Stickle, P.E. Sobol,and K.D. Bomben Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie, MN: Perkin-Elmer Corporation, 1982), p. 252Google Scholar
  20. 20.
    Strohmeier B.R. (1990) Surf. Interface Anal.15:51CrossRefGoogle Scholar
  21. 21.
    Alexander M.R., Thompson G.E., Beamson G. (2000) Surf. Interface Anal. 29:468CrossRefGoogle Scholar
  22. 22.
    Tsuchida T., Takahashi H. (1994) J. Mater. Res. 9:2919Google Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations