Advertisement

Journal of Electronic Materials

, Volume 36, Issue 3, pp 245–252 | Cite as

Synthesis of Nanometric-Sized Barium Titanate Powders Using Acetylacetone as the Chelating Agent in a Sol-Precipitation Process

  • Kun Ming Hung
  • Ching Shieh Hsieh
  • Wein Duo YangEmail author
  • Hui Ju Tsai
Article

Abstract

Nanometric-sized barium titanate powders were prepared by using titanium isopropoxid as the raw material and acetylacetone as a chelating agent, in a strong alkaline solution (pH > 13) through the sol-precipitation method. The preparatory variables affect the extent of cross-linking in the structure, change the mode of condensation of the gels, and even control the particle size of the powder. The reaction rate of forming powder, at a higher temperature such as 100°C and more water content (the molar ratio of water to titanium isopropoxide is 25) or fewer acetylacetone (the molar ratio of acetylacetone to titanium isopropoxide is 1), is rapid and the particle size formed is finer at 60–80 nm. On the contrary, that of forming powder, at lower temperature (40°C) and less water content (molar ratio of water/titanium isopropoxide = 5) or higher acetylacetone (acetylacetone/titanium isopropoxide = 7), is slow and the particle size of the powder is larger. The optimal preparatory conditions were obtained by using the experimental statistical method; as a result, nanometric-sized BaTiO3 powder with an average particle size of about 50 nm was prepared.

Keywords

Nanometric sized barium titanate sol-precipitation method optimal preparatory conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowlegement

The authors thank the National Science Council (Grant No. NSC 91-2218-E-151-002) for financial support of this work.

References

  1. 1.
    N.H. Chen, R.K. Sharma, D.M. Smyth J. Electrochem. Soc.: Solid-State Sci. Technol. 128, 1762 (1981)Google Scholar
  2. 2.
    A. Mackor, G. Blasse Chem. Phys. Lett. 77, 6 (1981)CrossRefGoogle Scholar
  3. 3.
    M.P. Pechini U.S. Patent 3 330,697 (1967)Google Scholar
  4. 4.
    B.A. Tuttle, Ceramic Powder, ed. P. Vincenzini (Amsterdam: Elsevier, 1987), pp. 62–69Google Scholar
  5. 5.
    D.E. Rase, R. Roy J. Chem. Phys. 19, 33 (1951)CrossRefGoogle Scholar
  6. 6.
    D.Y. Wang, K. Umeya J. Am. Ceram. Soc. 73, 669 (1990)CrossRefGoogle Scholar
  7. 7.
    K. Uchino, Mater. Sci. Forum 62, 251 (1990)Google Scholar
  8. 8.
    S. Chatterjee, K. Sengupta, H.S. Maiti, Sens. Actuat. B60, 155 (1999)CrossRefGoogle Scholar
  9. 9.
    J.M. Wilson, J.W. Symes U.S. Patent 5 783,165 (1998)Google Scholar
  10. 10.
    P.R. Arya, P. Jha, G.N. Subbanna, A.K. Ganguli Mater. Res. Bull 38, 617 (2003)CrossRefGoogle Scholar
  11. 11.
    H.B. Sharma, H.N.K. Sarma Thin Solid Films 330, 178 (1998)CrossRefGoogle Scholar
  12. 12.
    M.Z.C. Hu, V. Kurian E.A. Payzant C.J. Rawn, R.D. Hunt Powder Technol. 110, 2 (2000)CrossRefGoogle Scholar
  13. 13.
    J.Q. Qi, Y. Wang, W.P. Chen, L.T. Li, H.L.W. Chan J. Solid State Chem. 178, 279 (2005). CrossRefGoogle Scholar
  14. 14.
    S. Urek, Drofenik J. Euro. Ceram. Soc 18, 279 (1998)CrossRefGoogle Scholar
  15. 15.
    K.M. Hung, W.D. Yang, C.C. Huang J. Euro. Ceram. Soc. 23, 1901 (2003)CrossRefGoogle Scholar
  16. 16.
    F. Guangneng, H. Lixia, H. Xueguang J. Cryst. Growth 279, 489 (2005)CrossRefGoogle Scholar
  17. 17.
    R.W. Schwartz, J.A. Voigt, B.A. Tuttle, D.A. Payne, T.L. Reichert, R.S. Dasalla J. Mater. Res 12, 444 (1997)Google Scholar
  18. 18.
    C.S. Hsieh, T.S. Liou Quality Eng. 13, 449 (2001)CrossRefGoogle Scholar
  19. 19.
    C.F. Kao, W.D. Yang Ceram. Int. 22, 57 (1996)CrossRefGoogle Scholar
  20. 20.
    L. Weng, X. Bao, K.S. Crentsil Mater. Sci. Eng. B96, 307 (2002)CrossRefGoogle Scholar
  21. 21.
    S.S. Flaschen J. Am. Chem. Soc. 77, 6194 (1955)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Kun Ming Hung
    • 1
  • Ching Shieh Hsieh
    • 2
  • Wein Duo Yang
    • 3
    Email author
  • Hui Ju Tsai
    • 3
  1. 1.Department of Cosmetic Application and ManagementYung Ta Institute of Technology and CommercePingtungTaiwan
  2. 2.Department of Applied ChemistryFooyin UniversityTa-LiaoTaiwan
  3. 3.Department of Chemical and Materials EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan

Personalised recommendations