Advertisement

Journal of Electronic Materials

, Volume 36, Issue 1, pp 17–25 | Cite as

Effect of Interfacial Reaction on the Tensile Strength of Sn-3.5Ag/Ni-P and Sn-37Pb/Ni-P Solder Joints

  • Z. ChenEmail author
  • M. He
  • A. Kumar
  • G.J. Qi
Article

Abstract

This work investigates the effect of interfacial reaction on the mechanical strength of two types of solder joints, Sn-3.5Ag/Ni-P and Sn-37Pb/Ni-P. The tensile strength and fracture behavior of the joints under different thermal aging conditions have been studied. It is observed that the tensile strength decreases with increasing aging temperature and duration. Associated with the tensile strength decrease is the transition of failure modes from within the bulk solder in the as-soldered condition toward failures at the interface between the solder and the intermetallic compounds (IMCs). For the same aging treatment, the strength of the Sn-3.5Ag/Ni-P joint degrades faster than that of Sn-37Pb/Ni-P. The difference between the two types of joints can be explained by the difference in their interfacial reaction and growth kinetics. An empirical relation is established between the solder joint strength and the Ni3Sn4 intermetallic compound thickness.

Keywords

Lead-free solder electroless nickel intermetallic compound (IMC) tensile strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.H. Lau, Flip Chip Technologies (New York: McGraw-Hill, 1996)Google Scholar
  2. 2.
    N.A. Bruinsma, Lead-Free Soldering—Legislative Issues, the Road Towards Lead-Free Soldering (Eindhoven, Nov. 16, 2001)Google Scholar
  3. 3.
    WEEE, Directive of The European Parliament and of the Council on Waste Electrical and Electronic Equipment, on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (Brussels: Commission of The European Communities, 2000), pp. 59–83Google Scholar
  4. 4.
    H.K. Kim, K.N. Tu, P.A. Totta, J. Appl. Phys. Lett. 68, 2204 (1996)CrossRefGoogle Scholar
  5. 5.
    A.A. Liu, H.K. Kim, K.N. Tu, J. Appl. Phys. 80, 2774 (1996)CrossRefGoogle Scholar
  6. 6.
    K.N. Tu, K. Zeng, Mater. Sci. Eng. R34, 1 (2001)Google Scholar
  7. 7.
    K. Zeng, K.N. Tu, Mater. Sci. Eng. R38, 55 (2002)Google Scholar
  8. 8.
    P.G. Kim, J.W. Jang, T.Y. Lee, K.N. Tu, J. Appl. Phys. 86, 6746 (1999)CrossRefGoogle Scholar
  9. 9.
    R.J.K. Wassink, Soldering in Electronics (Ayr, Scotland: Electrochemical Publications Ltd., 1984)Google Scholar
  10. 10.
    K.C. Hung, Y.C. Chan, C.W. Tang, J. Mater. Sci.: Mater. Electron. 11, 587 (2000)CrossRefGoogle Scholar
  11. 11.
    P.L. Liu, J.K. Shang, Metall. Mater. Trans. A 31A, 2857 (2000). Google Scholar
  12. 12.
    A. Kumar, M. He, Z. Chen, Surface Coatings Technol. 198, 283 (2005)CrossRefGoogle Scholar
  13. 13.
    J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, P. Thompson, J. Appl. Phys. 85, 8456 (1999)CrossRefGoogle Scholar
  14. 14.
    M. He, Z. Chen, G.J. Qi, C.C. Wong, S. Mhaisalkar, Thin Solid Films 462, 363 (2004)CrossRefGoogle Scholar
  15. 15.
    Y.D. Jeon, K.W. Paik, IEEE Trans. Components Packaging Technol. 25, 169 (2002)CrossRefGoogle Scholar
  16. 16.
    C.Y. Lee, K.L. Lin, Thin Solid Films 249, 201 (1994)CrossRefGoogle Scholar
  17. 17.
    M. He, W.H. Lau, G.J. Qi, Z. Chen, Thin Solid Films 462, 376 (2004)CrossRefGoogle Scholar
  18. 18.
    K.L. Lin, Y.C. Liu, IEEE Trans. Adv. Packaging 22, 568 (1999)CrossRefGoogle Scholar
  19. 19.
    P.L. Liu, J.K. Shang, J. Mater. Res. 15, 2347 (2000)Google Scholar
  20. 20.
    Z. Mei, R.H. Dauskardt, MRS Spring Meeting Symposium M; Materials Reliability in Microelectronics IX (Pittsburgh, PA: Materials Research Society, 1999), pp. 1–6Google Scholar
  21. 21.
    M. He, Z. Chen, G.J. Qi, Acta Mater. 52, 2047 (2004)CrossRefGoogle Scholar
  22. 22.
    M. He, A. Kumar, P.T. Yeo, G.J. Qi, Z. Chen, Thin Solid Films 462, 387 (2004)CrossRefGoogle Scholar
  23. 23.
    Z. Chen, M. He, G.J. Qi, J. Electron. Mater. 33, 1465 (2004)CrossRefGoogle Scholar
  24. 24.
    M.O. Alam, Y.C. Chan, K.C. Hung, Microelectron. Reliability 42, 1065 (2002)CrossRefGoogle Scholar
  25. 25.
    M.O. Alam, Y.C. Chan, K.N. Tu, J. Appl. Phys. 94, 4108 (2003)CrossRefGoogle Scholar
  26. 26.
    Y.-D. Jeon, K.-W. Paik, K.-S. Bok, W.-S. Choi, and C.-L. Cho, Studies on Ni-Sn Intermetallic Compound and P-Rich Ni Layer at the Electroless Nickel UBM-Solder Interface and Their Effects on Flip Chip Solder Joint Reliability, Electronic Component and Technology Conf., 2001 Proc., 51st, pp. 1326–1332Google Scholar
  27. 27.
    M. He, Z. Chen, G.J. Qi, Metall. Mater. Trans. A 36A, 65 (2005)CrossRefGoogle Scholar
  28. 28.
    D.R. Frear, P.T. Vianco, Metall. Mater. Trans. A 25A, 1509 (1994)CrossRefGoogle Scholar
  29. 29.
    H.T. Lee, M.H. Chen, Mater. Sci. Eng. A 333, 24 (2002)Google Scholar
  30. 30.
    M. McCormack, S. Jin, G.W. Kammlott, H.S. Chen, Appl. Phys. Lett. 63, 15 (1993)CrossRefGoogle Scholar
  31. 31.
    Y.C. Chan, A.C.K. So, J.K.L. Lai, Mater. Sci. Eng. B55, 5 (1998)CrossRefGoogle Scholar
  32. 32.
    R.E. Pratt, E.I. Stromswold, D.J. Quesnel, J. Electron. Mater. 23, 375 (1994)CrossRefGoogle Scholar
  33. 33.
    R.E. Pratt E.I. Stromswold D.J. Quesnel, IEEE Trans. Components, Packaging, Manufacturing Technol., Part A 19, 134 (1996)Google Scholar

Copyright information

© TMS 2006

Authors and Affiliations

  1. 1.School of Materials Science & EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Singapore Institute of Manufacturing TechnologySingaporeSingapore

Personalised recommendations