Journal of Electronic Materials

, Volume 34, Issue 3, pp 232–239 | Cite as

Reprocessing of thermally oxidized aluminum arsenide (AlAs) in epitaxial multilayers without delamination

  • L. Hobbs
  • I. Eddie
  • G. Erwin
  • A. C. Bryce
  • R. M. De La Rue
  • J. S. Roberts
  • T. F. Krauss
  • D. W. Mccomb
  • M. Mackenzie
Regular Issue Paper

Abstract

Annealing or processing of AlAs that has been subjected to a wet thermal oxidation process can result in severe delamination of material at the oxidation front. This paper reports a procedure for preventing this delamination and presents a possible cause for the delamination.

Key words

AlAs thermal oxidation delamination 

References

  1. 1.
    K. Choquette, K.M. Geib, C.I.H. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammonds, D. Mathes, and R. Hull, IEEE J. Selected Topics Quantum Electron. 3, 916 (1997).CrossRefGoogle Scholar
  2. 2.
    J.M. Dallesasse, N. El-Zein, N. Holonyak, Jr., and K.C. Hsieh, J. Appl. Phys. 68, 2235 (1990).CrossRefGoogle Scholar
  3. 3.
    C.I.H. Ashby, M.M. Bridges, A.A. Allerman, B.E. Hammonds, and H.Q. Hou, Appl. Phys. Lett. 75, 73 (1999).CrossRefGoogle Scholar
  4. 4.
    P.W. Atkins, Physical Chemistry, 5th ed. (Oxford, United Kingdom: Oxford University Press, 1997), p. 149.Google Scholar
  5. 5.
    Deal and Grove, J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
  6. 6.
    K. Choquette, K.L. Lear, R.P. Schneider, Jr., K.M. Geib, J.J. Figiel, and R. Hull, IEEE Photon. Tech. Lett. 7, 1237 (1995).CrossRefGoogle Scholar
  7. 7.
    C.H. Ashby, J.P. Sullivan, P.P. Newcomer, N.A. Missert, H.Q. Hou, B.E. Hammonds, M.J. Hafich, and A.B. Baca, Appl. Phys. Lett. 70, 2443 (1997).CrossRefGoogle Scholar
  8. 8.
    T.D. Mathes (M.Sc. Thesis, University of Virginia, 1998).Google Scholar
  9. 9.
    S. Guha, F. Agahi, B. Pezeshki, J.A. Kash, D.W. Kisker, and N.A. Bojarczuk, Appl. Phys. Lett. 68, 906 (1995).CrossRefGoogle Scholar
  10. 10.
    S.A. Feld, and J.P. Loehr, IEEE Photonic Tech. L 10 (2) (1998).Google Scholar
  11. 11.
    C. Hilsum and A.C. Rose-Innes, Semiconducting III–V Compounds (NY: Pergamon Press, 1961), p. 3Google Scholar
  12. 12.
    R.D. Twesten, D.M. Follstaedt, K.D. Choquette, and R.P. Schneider, Appl. Phys. Lett. 69, 19 (1996).CrossRefGoogle Scholar
  13. 13.
    K. Choquette, K.M. Geib, H.C. Chui, B.E. Hammonds, H.Q. Hou, and T.J. Drummond, Appl. Phys. Lett. 69, 10 (1996).CrossRefGoogle Scholar
  14. 14.
    L.A. Giannuzzi, J.L. Drown, R.B. Irwin, and F. Stevie, Microsc. Res. Techn. 41, 285 (1998).CrossRefGoogle Scholar
  15. 15.
    D. Bimberg, J. Christen, T. Fukunaga, H. Nakashima, D.E. Mars, and J.A. Miller J. Vac. Sci. Technol. B 5, 1191 (1987).CrossRefGoogle Scholar
  16. 16.
    M. Mazilu, V. Donchev, O. Blum, and A. Miller Appl. Phys. B 68, 633 (1999).CrossRefGoogle Scholar
  17. 17.
    R.C. Weast, and M.J. Astle, CRC Handbook of Physics and Chemistry, 62nd ed., p. B-79, pp. 1981–1982.Google Scholar
  18. 18.
    H.Q. Jia, H. Chen, W.C. Wang, W.X. Wang, W. Li, Q. Huang, J. Zhou, and Q.K. Xue, Appl. Phys. Lett. 80, 974 (2002).CrossRefGoogle Scholar
  19. 19.
    G.W. Pickrell, J.H. Epple, K.L. Chang, K.C. Hsieh, and K.Y. Cheng Appl. Phys. Lett. 76, 2544 (2000).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • L. Hobbs
    • 1
  • I. Eddie
    • 1
  • G. Erwin
    • 1
  • A. C. Bryce
    • 1
  • R. M. De La Rue
    • 1
  • J. S. Roberts
    • 2
  • T. F. Krauss
    • 3
  • D. W. Mccomb
    • 4
  • M. Mackenzie
    • 5
  1. 1.Department of Electronics and Electrical EngineeringUniversity of GlasgowGlasgowUnited Kingdom
  2. 2.Centre for III–V MaterialsUniversity of SheffieldSheffieldUnited Kingdom
  3. 3.Department of PhysicsUniversity of St. AndrewSt AndrewsUnited Kingdom
  4. 4.Department of MaterialsImperial College LondonLondonUnited Kingdom
  5. 5.Kelvin Nanocharacterisation Centre, Department of Physics and AstronomyUniversity of GlasgowUK

Personalised recommendations