Journal of Electronic Materials

, Volume 34, Issue 11, pp 1414–1419

Density measurement of Sn-40Pb, Sn-57Bi, and Sn-9Zn by indirect Archimedean method

  • Lianwen Wang
  • Ai-Ping Xian
Regular Issue Paper
  • 85 Downloads

Abstract

By the indirect Archimedean method, the density and the density-temperature relationship of the Sn-40Pb eutectic alloy and two Pb-free solders, Sn-57Bi and Sn-9Zn eutectic alloys, were measured from room temperature to about 250°C. The results showed that the density-temperature dependence for each alloy in both solid and melting states can be fitted linearly as ρS(Sn-40Pb)=8.51−8.94×10−4(T−25°C), ρL(Sn-40Pb)=8.15−13.8×10−4(T−Tm); ρS(Sn-57Bi)=8.54−5.86 × 10−4(T−25°C), ρL(Sn-57Bi)=8.51−10.9×10−4(T−Tm); and ρs(Sn-9Zn)=7.22−7.78×10−4(T−25°C), ρL(Sn-9Zn)=6.89−5.88×10 −4(T−Tm), where the density unit was g/cm3. At the melting point, density of the melt of these solders is 8.15 g/cm3, 8.51 g/cm3, and 6.89 g/cm3, respectively. The density decreased 2.6% for Sn-40Pb eutectic alloy during melting, and 2.7% for Sn-9Zn eutectic alloy, but increased 0.5% for Sn-57Bi eutectic alloy. The excess molar volume for these alloys after mixing at their melting point is 0.03 cm3/mol for Sn-40Pb, 0.09 cm3/mol for Sn-57Bi, and 0.21 cm3/mol for Sn-9Zn.

Key words

Lead (Pb)-free solders density indirect Archimedean method liquid tin (Sn) alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Glazer, Int. Mater. Rev. 40, 65 (1995).Google Scholar
  2. 2.
    K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).CrossRefGoogle Scholar
  3. 3.
    K. Suganuma, M. Ueshima, I. Ohnaka, H. Yasuda, J. Zhu, and T. Matsuda, Acta Mater. 48, 4475 (2000).CrossRefGoogle Scholar
  4. 4.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. R27, 95 (2000).Google Scholar
  6. 6.
    Z. Moser, W. Gasior, J. Pstrus, and S. Ksiezarek, J. Elect. Mater. 31, 1225 (2002).Google Scholar
  7. 7.
    Z. Moser, W. Gasior, and J. Pstrus, J. Elect. Mater. 30, 1104 (2001).Google Scholar
  8. 8.
    T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, 2nd ed. (Oxford, United Kingdom: Clarendon, 1993), pp. 47–58.Google Scholar
  9. 9.
    R.C. Weast, D.R. Lide, and M.I. Astle, CRC Handbook of Chemistry and Physics, 79th ed., ed. W.H. Beyer (Boca Raton, FL: Chemical Rubber Company Press, 1999), pp. 12–192.Google Scholar
  10. 10.
    L.W. Wang, Q. Wang, A.P. Xian, and K.Q. Lu, J. Phys.: Cond. Matter 15, 777 (2003).CrossRefGoogle Scholar
  11. 11.
    H.R. Thresh, A.F. Crawley, and D.W.G. White, Trans. Am. Soc. AIME 242, 819 (1968).Google Scholar
  12. 12.
    E. Gebhardt and K. Kostlin, Z. Metallkd. 48, 636 (1957).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • Lianwen Wang
    • 1
  • Ai-Ping Xian
    • 1
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metals ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations