Journal of Electronic Materials

, Volume 34, Issue 6, pp 880–884 | Cite as

Minority carrier lifetime in p-HgCdTe

  • M. A. Kinch
  • F. Aqariden
  • D. Chandra
  • P-K Liao
  • H. F. Schaake
  • H. D. Shih
Special Issue Paper

Abstract

High operating temperature (HOT) detector concepts using midwave infrared (MWIR) (x∼0.3) p-type HgCdTe operating at temperatures within the thermoelectric cooler range are of significant interest at the present time. However, it is apparent that much work remains to be done in the areas of material, diode passivation, and diode formation technologies before the “holy grail” of photon detection at room temperature for all infrared wavelengths is achieved. Over the years, at DRS, we have developed a technology base for both n- and p-type HgCdTe materials parameters that are relevant to photodiode design and fabrication. This paper will discuss data that we have taken recently on minority carrier lifetime in MWIR and long wave infrared (LWIR) HgCdTe, particularly p type, and how it compares to current theories of Auger 7, radiative, and Shockley-Read recombination in this material. Extrinsic group IB (Cu, Au) and group V (arsenic) p-type dopants were used, together with group III (In) for n-type. The impact of the data on future HOT detector work is discussed.

Key words

HgCdTe carrier lifetime high operating temperature midwave infrared (MWIR) long wave infrared (LWIR) p-type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.T. Gordon, C.L. Jones, D.J. Lees, C.D. Maxey, T.S. Phillips, L. Hipwood, P.C. Haynes, and R. Catchopole, Infrared Technology and Applications XXX, vol. 5406, ed. B.F. Anderson and G.F. Fulop (Bellingham, WA: SPIE, 2004), pp. 145–151.Google Scholar
  2. 2.
    A.R. Beattie and P.T. Landsberg, Proc. R. Soc. A249, 16 (1959).Google Scholar
  3. 3.
    J.S. Blakemore, Semiconductor Statistics (New York: Pergamon, 1962), ch. 6, pp. 216–222.Google Scholar
  4. 4.
    S. Krishnamurthy and T.N. Casselman, J. Electron. Mater. 29, 828 (2000).Google Scholar
  5. 5.
    W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).CrossRefGoogle Scholar
  6. 6.
    R.G. Humphreys, Infrared Phys. 26, 337 (1986).CrossRefGoogle Scholar
  7. 7.
    M.A. Kinch, M.J. Brau, and A. Simmons, J. Appl. Phys. 44, 1649 (1973).CrossRefGoogle Scholar
  8. 8.
    M.C. Chen and L. Colombo, J. Appl. Phys. 72, 4761 (1992).CrossRefGoogle Scholar
  9. 9.
    C.D. Maxey, M.U. Ahmed, P. Capper, C.L. Jones, N.T. Gordon, and M. White, J. Mater. Sci. 11, 565 (2000).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • M. A. Kinch
    • 1
  • F. Aqariden
    • 1
  • D. Chandra
    • 1
  • P-K Liao
    • 1
  • H. F. Schaake
    • 1
  • H. D. Shih
    • 1
  1. 1.DRS Infrared TechnologiesDallas

Personalised recommendations