Journal of Electronic Materials

, Volume 33, Issue 8, pp 846–850 | Cite as

Normal-incidence mid-infrared Ge quantum-dot photodetector

  • Fei Liu
  • Song Tong
  • Jianlin Liu
  • Kang L. Wang
Regular Issue Paper

Abstract

Mid-infrared photodetectors were demonstrated by using molecular-beam epitaxy (MBE)-grown self-assembled Ge quantum dots (QDs). The response wavelength ranged from 2.2 µm to 3.1 µm and peaked at 2.8 µm. The peak response wavelengths shifted to 2.9 µm and 3.5 µm after thermal annealing at 700°C and 900°C for 5 min, respectively. Normal-incidence detection was confirmed, and the mechanism of a Ge QD photodetector was discussed. Calculations showed the key parameters determining response wavelength of the Ge QD infrared photodetector, which agreed with experimental results.

Key words

Ge quantum dot (QD) mid-infrared photodetector annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Siliquini and L. Faraone, Semicond. Sci. Technol. 11, 1906 (1996).CrossRefGoogle Scholar
  2. 2.
    J.S. Smith, L.C. Chiu, S. Margalit, A. Yariv, and A.Y. Cho, J. Vac. Sci. Technol. B 1, 376 (1983).CrossRefGoogle Scholar
  3. 3.
    B.F. Levine, J. Appl. Phys. 74, R1 (1993).Google Scholar
  4. 4.
    H.C. Liu, M. Buchanan, and Z.R. Wasilewski, Appl. Phys. Lett. 72, 1682 (1998).CrossRefGoogle Scholar
  5. 5.
    S. Maimon, E. Finkman, G. Bahir, S.E. Schacham, J.M. Garcia, and P.M. Petroff, Appl. Phys. Lett. 73, 2003 (1998).CrossRefGoogle Scholar
  6. 6.
    L. Chu, A. Zrenner, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 75, 3599 (1999).CrossRefGoogle Scholar
  7. 7.
    Q.D. Zhuang, J.M. Li, H.X. Li, Y.P. Zeng, L. Pan, Y.H. Chen, M.Y. Kong, and L.Y. Lin, Appl. Phys. Lett. 73, 3706 (1998).CrossRefGoogle Scholar
  8. 8.
    V. Ryzhii, Semicond. Sci. Technol. 11, 759 (1996).CrossRefGoogle Scholar
  9. 9.
    K.L. Wang and R.P.G. Karunasiri, Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors, ed. M.O. Manasreh (Boston, MA: Artech House, 1993), pp. 139–204.Google Scholar
  10. 10.
    J.L. Liu, W.G. Wu, A. Balandin, G.L. Jin, and K.L. Wang, Appl. Phys. Lett. 74, 185 (1999).CrossRefGoogle Scholar
  11. 11.
    C. Miesner, O. Rothig, K. Brunner, and G. Abstreiter, Appl. Phys. Lett. 76, 1027 (1999).CrossRefGoogle Scholar
  12. 12.
    A.I. Yakimov, N.P. Stepina, A.V. Dvurechenskii, and A.I. Nikiforov, Phys. Rev. B 63, 045312 (2001).Google Scholar
  13. 13.
    S. Tong, J.L. Liu, J. Wan, and K.L. Wang, Appl. Phys. Lett. 80, 1189 (2002).CrossRefGoogle Scholar
  14. 14.
    V. Ryzhii, V. Pipa, I. Khmyrova, V. Mitin, and M. Willander, Jpn. J. Appl. Phys. 39, 1283 (2000).CrossRefGoogle Scholar
  15. 15.
    K. Boujdaria, S. Ridene, S.B. Radhia, O. Zitouni, H. Bouchriha, and G. Fishman, J. Appl. Phys. 92, 2586 (2002).CrossRefGoogle Scholar
  16. 16.
    Z.M. Jiang, X.M. Jiang, W.R. Jiang, Q.J. Jia, W.L. Zheng, and D.C. Qian, Appl. Phys. Lett. 76, 3397 (2000).CrossRefGoogle Scholar
  17. 17.
    M.M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).CrossRefGoogle Scholar
  18. 18.
    J. Wan, Y.H. Luo, Z.M. Jiang, G. Jin, J.L. Liu, K.L. Wang, X.Z. Liao, and J. Zou, Appl. Phys. Lett. 79, 1980 (2001).CrossRefGoogle Scholar
  19. 19.
    X.Z. Liao, J. Zou, D.J.H. Cockayne, J. Wan, Z.M. Jiang, G. Jin, and K.L. Wang, Appl. Phys. Lett. 79, 1258 (2001).CrossRefGoogle Scholar
  20. 20.
    Y.-Y. Lin and J. Singh, to be published in J. Appl. Phys. Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • Fei Liu
    • 1
  • Song Tong
    • 1
  • Jianlin Liu
    • 2
  • Kang L. Wang
    • 1
  1. 1.Device Research Laboratory, Department of Electrical EngineeringUniversity of California at Los AngelesLos Angeles
  2. 2.Department of Electrical EngineeringUniversity of California at RiversideRiverside

Personalised recommendations