Journal of Electronic Materials

, Volume 33, Issue 11, pp 1298–1302 | Cite as

Origin of room-temperature ferromagnetism in cobalt-doped ZnO

  • S. Ramachandran
  • Ashutosh Tiwari
  • J. Narayan
Special Issue Paper


Thin films of ZnO doped with cobalt have been grown by the pulsed laser deposition (PLD) technique in different temperatures ranging from 500°C to 650°C. The films grown on sapphire c-plane single crystal were found to be highly epitaxial. Magnetic properties of these films were studied, and the films exhibited ferromagnetic characteristics at room temperature. Detailed structural and microstructural characterization was performed to correlate the fate of the magnetic impurities, i.e., cobalt, and the cause of magnetic properties. It is established from this work that the magnetic properties of these films are inherent to the system, and any presence of second phase/nanoclusters/precipitates are ruled out as the cause of magnetic properties. The techniques used to establish these were conventional and high-resolution transmission electron microscopy (HRTEM) along with electron-energy loss spectroscopy (EELS) and scanning transmission electron microscopy-atomic number (STEM-Z) contrast studies.

Key words

ZnO Co ferromagnetism pulsed laser deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.Y. Yang A.B. Pakhomov, S.T. Hund, and C.Y. Wong, IEEE Trans. Mag. 38, 2877 (2002).CrossRefGoogle Scholar
  2. 2.
    G.A. Prinz, Science 282, 1660 (1998).CrossRefGoogle Scholar
  3. 3.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  4. 4.
    T. Dietl, Nature Mater. 2, 646 (2003).CrossRefGoogle Scholar
  5. 5.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).CrossRefGoogle Scholar
  6. 6.
    K. Sato and H.K. Yoshida, Mater. Res. Soc. Symp. Proc. 666, F4.6.1 (2001).Google Scholar
  7. 7.
    N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, and R.G. Wilson, Res. Soc. Symp. Proc. 674, T6.8.1 (2001).Google Scholar
  8. 8.
    K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).CrossRefGoogle Scholar
  9. 9.
    A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, and J. Narayan, Solid State Comm. 121, 371 (2002).CrossRefGoogle Scholar
  10. 10.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, and G.A. Gehring, Nature Mater. 2, 673 (2003).CrossRefGoogle Scholar
  11. 11.
    D.P. Norton et al., Appl. Phys. Lett. 83, 5488 (2003).CrossRefGoogle Scholar
  12. 12.
    D.B. Chrisey and G.H. Hubler, Pulsed Laser Deposition of Thin Films (New York: John Wiley and Sons Inc., 1994).Google Scholar
  13. 13.
    S.J. Pearton et al., J. Appl. Phys. 93, 1 (2003).CrossRefGoogle Scholar
  14. 14.
    P. Hirsch, A. Howie, R.B. Nicholoson, D.W. Pashley, and M.J. Whelan, Electron Microscopy of Thin Crystals, 2nd ed. (Huntington, NY: Robert E. Kreiger Pub. Co., 1977), p. 314.Google Scholar
  15. 15.
    J. Narayan and B.C. Larson, J. Appl. Phys. 93, 278 (2003).CrossRefGoogle Scholar
  16. 16.
    K.J. Kim and Y.R. Park, Appl. Phys. Lett. 81, 1420 (2002).CrossRefGoogle Scholar
  17. 17.
    P. Koidl, Phys. Rev. B 15, 2493 (1977).CrossRefGoogle Scholar
  18. 18.
    M. Klimenkov, J. von Borany, W. Matz, D. Eckert, M. Wolf, and K.H. Müller, Appl. Phys. A 74, 571 (2002).CrossRefGoogle Scholar
  19. 19.
    T. Dietl and H. Ohno, Mater. Res. Soc. Bull. 28, 714 (2003).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • S. Ramachandran
    • 1
  • Ashutosh Tiwari
    • 1
  • J. Narayan
    • 1
  1. 1.NSF Center for Advanced Materials and Smart Structures, Department of Materials Science and EngineeringNorth Carolina State UniversityRaleigh

Personalised recommendations