Advertisement

Journal of Electronic Materials

, Volume 33, Issue 10, pp 1182–1189 | Cite as

Interfacial reactions and shear strengths between Sn-Ag-based Pb-free solder balls and Au/EN/Cu metallization

  • Sang-Won Kim
  • Jeong-Won Yoon
  • Seung-Boo Jung
Special Issue Paper

Abstract

The morphological and compositional evolutions of intermetallic compounds (IMCs) formed at three Pb-free solder/electroless Ni-P interface were investigated with respect to the solder compositions and reflow times. The three Pb-free solder alloys were Sn3.5Ag, Sn3.5Ag0.75Cu, and Sn3Ag6Bi2In (in wt.%). After reflow reaction, three distinctive layers, Ni3Sn4 (or Ni-Cu-Sn for Sn3.5Ag0.75Cu solder), NiSnP, and Ni3P, were formed on the electroless Ni-P layer in all the solder alloys. For the Sn3.5Ag0.75Cu solder, with increasing reflow time, the interfacial intermetallics switched from (Cu,Ni)6Sn5 to (Cu,Ni)6Sn5+(Ni,Cu)3Sn4, and then to (Ni,Cu)3Sn4 IMCs. The degree of IMC spalling for the Sn3.5Ag0.75Cu solder joint was more than that of other solders. In the cases of the Sn3.5Ag and Sn3Ag6Bi2In solder joints, the growth rate of the Ni3P layer was similar because these two type solder joints had a similar interfacial reaction. On the other hand, for the Sn3.5Ag0.75Cu solder, the thickness of the Ni3P and Ni-Sn-P layers depended on the degree of IMC spalling. Also, the shear strength showed various characteristics depending on the solder alloys and reflow times. The fractures mainly occurred at the interfaces of Ni3Sn4/Ni-Sn-P and solder/Ni3Sn4.

Key words

Pb-free solder ball grid array (BGA) intermetallic compound (IMC) ball shear strength electroless Ni-P 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).Google Scholar
  2. 2.
    C.B. Lee, S.B. Jung, Y.E. Shin, and C.C. Shur, Mater. Trans. 42, 751 (2001).CrossRefGoogle Scholar
  3. 3.
    K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, J. Mater. Res. 13, 2859 (1998).Google Scholar
  4. 4.
    J.W. Yoon, C.B. Lee, and S.B. Jung, Mater. Trans. 43, 1821 (2002).CrossRefGoogle Scholar
  5. 5.
    J. Glazer, Int. Mater. Rev. 40, 65 (1995).Google Scholar
  6. 6.
    C.B. Lee, J.W. Yoon, S.J. Suh, S.B. Jung, C.W. Yang, C.C. Shur, and Y.E. Shin, J. Mater. Sci. Mater. Electron. 14, 487 (2003).CrossRefGoogle Scholar
  7. 7.
    C.H. Raeder, L.E. Felton, V.A. Tanzi, and D.B. Knorr, J. Electron. Mater. 23, 611 (1994).Google Scholar
  8. 8.
    Z. Mei and J.W. Morris, Jr, J. Electron. Mater. 21, 599 (1992).Google Scholar
  9. 9.
    T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).Google Scholar
  10. 10.
    K.N. Tu, A.M. Gusak, and M. Li, J. Appl. Phys. 93, 1335 (2003).CrossRefGoogle Scholar
  11. 11.
    Y.M. Chow, W.M. Lau, and Z.S. Karim, Surf. Interface Anal. 31, 321 (2001).CrossRefGoogle Scholar
  12. 12.
    J.W. Yoon, S.W. Kim, and S.B. Jung, Mater. Trans. 45, 727 (2004).CrossRefGoogle Scholar
  13. 13.
    J.W. Yoon and S.B. Jung, J. Mater. Sci. 39, 4211 (2004).CrossRefGoogle Scholar
  14. 14.
    R.M. Allen and J.B. Vandersande, Scripta Mater. 16, 1161 (1982).CrossRefGoogle Scholar
  15. 15.
    K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).Google Scholar
  16. 16.
    K.N. Tu and K. Zeng, Mater. Sci. Eng. R 34, 1 (2001).Google Scholar
  17. 17.
    J.W. Yoon, C.B. Lee, and S.B. Jung, J. Electron. Mater. 32, 1195 (2003).CrossRefGoogle Scholar
  18. 18.
    M.O. Alam, Y.C. Chan, and K.N. Tu, J. Appl. Phys. 94, 4108 (2003).CrossRefGoogle Scholar
  19. 19.
    C.B. Lee, I.Y. Lee, S.B. Jung, and C.C. Shur, Mater. Trans. 43, 751 (2002).CrossRefGoogle Scholar
  20. 20.
    S.K. Kang, W.K. Choi, M.J. Yim, and D.Y. Shih, J. Electron. Mater. 31, 1292 (2002).CrossRefGoogle Scholar
  21. 21.
    J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, J. Appl. Phys. 88, 6359 (2000).CrossRefGoogle Scholar
  22. 22.
    K.C. Hung, Y.C. Chan, and C.W. Tang, J. Mater. Sci. Mater. Electron. 11, 587 (2000).CrossRefGoogle Scholar
  23. 23.
    J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).CrossRefGoogle Scholar
  24. 24.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagram, 2nd ed. (Materials Park, OH: ASM International, 1990), pp. 794–796.Google Scholar
  25. 25.
    S.J. Wang and C.Y. Liu, Scripta Mater. 49, 813 (2003).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • Sang-Won Kim
    • 1
  • Jeong-Won Yoon
    • 1
  • Seung-Boo Jung
    • 1
  1. 1.Department of Advanced Materials EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations