Journal of Electronic Materials

, Volume 33, Issue 12, pp 1485–1496

Elevated temperature aging of solder joints based on Sn-Ag-Cu: Effects on joint microstructure and shear strength

  • I. E. Anderson
  • J. L. Harringa
Special Issue Paper

Abstract

The shear strength behavior and microstructural effects after aging for 100 h and 1,000 h at 150°C are reported for near-eutectic Sn-Ag-Cu (SAC) solder joints (joining to Cu) made from Sn-3.5Ag (wt.%) and a set of SAC alloys (including Co- and Fe-modified SAC alloys). All joints in the as-soldered and 100-h aged condition experienced shear failure in a ductile manner by either uniform shear of the solder matrix (in the strongest solders) or by a more localized shear of the solder matrix adjacent to the Cu6Sn5 interfacial layer, consistent with other observations. After 1,000 h of aging, a level of embrittlement of the Cu3Sn/Cu interface can be detected in some solder joints made with all of the SAC alloys and with Sn-3.5Ag, which can lead to partial debonding during shear testing. However, only ductile failure was observed in all solder joints made from the Co- and Fe-modified SAC alloys after aging for 1,000 h. Thus, the strategy of modifying a strong (high Cu content) SAC solder alloy with a substitutional alloy addition for Cu seems to be effective for producing a solder joint that retains both strength and ductility for extended isothermal aging at high temperatures.

Key words

Lead-free solder shear strength joint microstructure thermal aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater. 23, 595 (1994).Google Scholar
  2. 2.
    “When You Throw Away the Refrigerator,” Consumer Reports 59, 100 (1994).Google Scholar
  3. 3.
    E. Bastow, Adv. Mater. Proc. 161, 26 (2003).Google Scholar
  4. 4.
    K. Suganuma, MRS Bull. 26, 880 (2001).Google Scholar
  5. 5.
    K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).CrossRefGoogle Scholar
  6. 6.
    C.A. Drewien, F.G. Yost, S.J. Sackinger, J. Kern, and M.W. Weiser, “Progress Report: High Temperature Solder Alloys for Underhood Applications,” Sandia Report SAND95-0196. UC-704 (Albuquerque, NM: Sandia National Laboratories, 1995).Google Scholar
  7. 7.
    S.K. Kang, W.K. Choi, M.J. Yim, and D.Y. Shih, J. Electron. Mater. 31, 1292 (2002).CrossRefGoogle Scholar
  8. 8.
    B.A. Cook, I.E. Anderson, J.L. Harringa, and S.K. Kang, J. Electron. Mater. 32, 1384 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Farooq, C. Goldsmith, R. Jackson, and G. Martin, J. Electron. Mater. 32, 1421 (2003).CrossRefGoogle Scholar
  10. 10.
    W.J. Plumbridge, C.R. Gagg, and S. Peters, J. Electron. Mater. 30, 1178 (2001).Google Scholar
  11. 11.
    S. Choi, J.G. Lee, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 31, 292 (2002).CrossRefGoogle Scholar
  12. 12.
    J. Bath, C. Handweker, and E. Bradley, Circuits Assembly 5, 31 (2000).Google Scholar
  13. 13.
    Dr. T. Pan, private communication (12 February 2001).Google Scholar
  14. 14.
    M. McCormack and S. Jin, J. Minerals, Met. Mater. 45, 36 (1993).Google Scholar
  15. 15.
    I.E. Anderson, B.A. Cook, J.L. Harringa, and R.L. Terpstra, Proc. Int. Brazing and Soldering Conf. (Miami, FL: American Welding Society, 2003), indexed CD-ROM.Google Scholar
  16. 16.
    I.E. Anderson, B.A. Cook, J. Harringa, R.L. Terpstra, J.C. Foley, and O. Unal, Mater. Trans. 43, 1827 (2002).CrossRefGoogle Scholar
  17. 17.
    I.E. Anderson, B.A. Cook, J.L. Harringa, and R.L. Terpstra, JOM 54, 26 (2002).Google Scholar
  18. 18.
    J.-Y. Park, R. Kabade, C.-U. Kim, T. Carper, S. Dunford, and V. Puligandla, J. Electron. Mater. 32, 1474 (2003).CrossRefGoogle Scholar
  19. 19.
    I.E. Anderson, T.E. Bloomer, J.C. Foley, and R.L. Terpstra, Proc. IPC Works ’99 IPC, (Northbrook, IL: IPC, 1999).Google Scholar
  20. 20.
    I.E. Anderson and R.L. Terpstra, U.S. patent 6,231,691 (15 May 2001).Google Scholar
  21. 21.
    I.E. Anderson, J.C. Foley, B.A. Cook, J.L. Harringa, R.L. Terpstra, and O. Unal, J. Electron. Mater. 30, 1050 (2001).Google Scholar
  22. 22.
    I.E. Anderson, T.E. Bloomer, R.L. Terpstra, J.C. Foley, B.A. Cook, and J.L. Harringa, in Advanced Brazing and Solidering Technologies, eds. P.T. Vianco and M. Singh (Miami, FL: American Welding Society, 2000), p. 575.Google Scholar
  23. 23.
    I.E. Anderson, B.A. Cook, J. Harringa, and R.L. Terpstra, J. Electron. Mater. 31, 1166 (2002).CrossRefGoogle Scholar
  24. 24.
    W.L. Winterbottom, J. Met. 45, 20 (1993).Google Scholar
  25. 25.
    O. Unal, I.E. Anderson, J.L. Harringa, R.L. Terpstra, B.A. Cook, and J.C. Foley, J. Electron. Mater. 30, 1206 (2001).Google Scholar
  26. 26.
    P. Lauro, S.K. Kang, W.K. Choi, and D.-Y. Shih, J. Electron. Mater. 32, 1432 (2003).CrossRefGoogle Scholar
  27. 27.
    R.E. Reed-Hill, Physical Metallurgy Principles (New York: D. Van Nostrand Company, 1973), pp. 346–353.Google Scholar
  28. 28.
    H.-T. Lee, M.-H. Chen, H.-M. Jao, and T.-L. Liao, Mater. Eng. A 358, 134 (2003).CrossRefGoogle Scholar
  29. 29.
    P.T. Vianco, J.A. Rejent, and J.J. Martin, JOM 55, 50 (2003).Google Scholar
  30. 30.
    R.E. Reed-Hill, Physical Metallurgy Principles (New York: D. Van Nostrand Company, 1973), pp. 386–397.Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • I. E. Anderson
    • 1
  • J. L. Harringa
    • 1
  1. 1.Ames Laboratory (USDOE)Iowa State UniversityAmes

Personalised recommendations