Journal of Electronic Materials

, Volume 33, Issue 6, pp 630–639 | Cite as

HgCdTe electron avalanche photodiodes

  • M. A. Kinch
  • J. D. Beck
  • C. -F. Wan
  • F. Ma
  • J. Campbell
Special Issue Paper

Abstract

Exponential-gain values well in excess of 1,000 have been obtained in HgCdTe high-density, vertically integrated photodiode (HDVIP) avalanche photodiodes (APDs) with essentially zero excess noise. This phenomenon has been observed at temperatures in the range of 77–260 K for a variety of cutoff wavelengths in the mid-wavelength infrared (MWIR) band, with evidence of similar behavior in other IR bands. A theory for electron avalanche multiplication has been developed using density of states and electron-interaction matrix elements associated with the unique band structure of HgCdTe, with allowances being made for the relevant scattering mechanisms of both electrons and holes at these temperatures. This theory is used to develop an empirical model to fit the experimental data obtained at DRS Infrared Technologies. The functional dependence of gain on applied bias voltage is obtained by the use of one adjustable parameter relating electron energy to applied voltage. A more quantitative physical theory requires the use of Monte Carlo techniques incorporating the preceding scattering rates and ionization probabilities. This has been performed at the University of Texas at Austin, and preliminary data indicate good agreement with DRS models for both avalanche gain and excess noise as a function of applied bias. These data are discussed with a view to applications at a variety of wavelengths.

Key words

HgCdTe avalanche photodiodes (APDs) mid-wavelength infrared (MWIR) high-density vertically integrated photodiode (HDVIP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Beck, C.-F. Wan, M.A. Kinch, and J.E. Robinson, Proc. SPIE 4454, 188 (2001).CrossRefGoogle Scholar
  2. 2.
    J.D. Beck, C.-F. Wan, M.A. Kinch, J.E. Robinson, F. Ma, and J.C. Campbell, LEOS 2003 Annual Meeting (Piscataway, NJ: IEEE, 2003), pp. 849–850.CrossRefGoogle Scholar
  3. 3.
    F. Aqariden, private communication, 2003.Google Scholar
  4. 4.
    R. Stratton, Proc. R. Soc. A246, 406 (1958).Google Scholar
  5. 5.
    H. Brooks, Adv. Electron. Electron Phys. 7, 85 (1955).CrossRefGoogle Scholar
  6. 6.
    C. Erginsoy, Phys. Rev. 79, 1013 (1950).CrossRefGoogle Scholar
  7. 7.
    S. Krishnamurthy, A. Sher, and A.-B. Chen, Appl. Phys. Lett. 47, 160 (1985).CrossRefGoogle Scholar
  8. 8.
    P.M. Hui, H. Ehrenreich, and N.F. Johnson, J. Vac. Sci. Technol. A 7, 424 (1989).CrossRefGoogle Scholar
  9. 9.
    B. Segall, M.R. Lorenz, and R.E. Halstead, Phys. Rev. 129, 2471 (1963).CrossRefGoogle Scholar
  10. 10.
    S. Yamada, J. Phys. Soc. Jpn. 15, 1940 (1960).CrossRefGoogle Scholar
  11. 11.
    E.H. Putley, Solid State Phys. Electron. Telecommun. 2, 751 (1960).Google Scholar
  12. 12.
    H.J. Hrostowski, F.J. Morin, T.H. Geballe, and G.H. Wheatley, Phys. Rev. 100, 1672 (1955).CrossRefGoogle Scholar
  13. 13.
    C. Grein, private communication, 2002.Google Scholar
  14. 14.
    R.D. Graft, J. Vac. Sci. Technol. 21, 146 (1982).CrossRefGoogle Scholar
  15. 15.
    A.R. Beattie and P.T. Landsberg, Proc. R. Soc. A249, 16 (1959).Google Scholar
  16. 16.
    E. Antoncik and J. Tauc, Semiconductors and Semimetals, Vol. 2, eds. R.K. Wilardson and A.C. Beer (New York: Academic Press, 1970), p. 245–262.Google Scholar
  17. 17.
    A.R. Beattie and P.T. Landsberg, Proc. R. Soc. 258A, 486 (1960).Google Scholar
  18. 18.
    M.A. Berding, S. Krishnamurthy, A. Sher, and A.-B. Chen, J. Cryst. Growth 86, 33 (1988).CrossRefGoogle Scholar
  19. 19.
    J.D. Beck, private communication, 2003.Google Scholar
  20. 20.
    C.T. Elliott, N.T. Gordon, R.S. Hall, and C. Grimes, J. Vac. Sci. Technol. A 8, 1251 (1990).CrossRefGoogle Scholar
  21. 21.
    R.J. McIntyre, IEEE Trans. Electron Dev. ED-13, 164 (1966).Google Scholar
  22. 22.
    F. Ma, X. Li, J.C. Campbell, J.D. Beck, C.-F. Wan, and M.A. Kinch, Appl. Phys. Lett. 83, 785 (2003).CrossRefGoogle Scholar
  23. 23.
    F. Ma (Ph.D. thesis, University of Texas at Austin, 2003).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • M. A. Kinch
    • 1
  • J. D. Beck
    • 1
  • C. -F. Wan
    • 1
  • F. Ma
    • 2
  • J. Campbell
    • 2
  1. 1.DRS Infrared TechnologiesDallas
  2. 2.University of Texas at AustinAustin

Personalised recommendations