Journal of Electronic Materials

, Volume 33, Issue 6, pp 517–525

Spectral crosstalk by radiative recombination in sequential-mode, dual mid-wavelength infrared band HgCdTe detectors

  • R. A. Coussa
  • A. M. Gallagher
  • K. Kosai
  • L. T. Pham
  • G. K. Pierce
  • E. P. Smith
  • G. M. Venzor
  • T. J. De Lyon
  • J. E. Jensen
  • B. Z. Nosho
  • J. A. Roth
  • J. R. Waterman
Special Issue Paper

Abstract

For small pixel, infrared (IR) focal plane arrays (FPAs), Raytheon Vision Systems’ architecture for integrated, dual-band detectors uses the sequential mode of the n-p+-n configuration. There is a single indium bump per pixel, leaving the p+ layer floating, and the operating polarity of the bias selects the spectral sensitivity by reverse-biasing the active p-n junction. Photogenerated minority carriers in the absorber layer of the forward-biased inactive photodiode are lost through recombination. This paper is the first report of a new optical crosstalk mechanism that occurs in sequential-mode, dual-band detectors. In the long-wavelength mode under out-of-band, short-wavelength illumination, radiative recombination yields emission near the bandgap energy of the short-wavelength absorber layer, resulting in a spurious short-wavelength response that appears as spectral crosstalk. We present experimental and device modeling results on the spectral crosstalk in molecular-beam-epitaxy-grown HgCdTe arrays with the cutoff wavelength of both bands in the 4–5-µm range.

Key words

HgCdTe infrared detector two-color detector crosstalk radiative recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Campbell, T.P. Lee, A.G. Dentai, and C.A. Burrus, Appl. Phys. Lett. 34, 401 (1979).CrossRefGoogle Scholar
  2. 2.
    A. Rogalski, Infrared Phys. Tech. 41, 213 (2000).CrossRefGoogle Scholar
  3. 3.
    E.F. Schulte, U.S. patent 5,113,076 (12 May 1992).Google Scholar
  4. 4.
    E.R. Blazejewski, J.M. Arias, G.M. Williams, W. McLevige, M. Zandian, and J. Pasko, J. Vac. Sci. Technol. B 10, 1626 (1992).CrossRefGoogle Scholar
  5. 5.
    T.J. de Lyon, J.A. Vigil, O.K. Wu, J.L. Johnson, E.A. Patten, K. Kosai, G. Venzor, V. Lee, and S.M. Johnson, J. Vac. Sci Technol. B 16, 1321 (1998).CrossRefGoogle Scholar
  6. 6.
    R.D. Rajavel et al., J. Electron. Mater. 26, 476 (1997).Google Scholar
  7. 7.
    R.D. Rajavel et al., J. Electron. Mater. 27, 747 (1998).CrossRefGoogle Scholar
  8. 8.
    ISE Integrated Systems Engineering AG, Zurich.Google Scholar
  9. 9.
    K. Kosai, J. Electron. Mater. 24, 635 (1995).Google Scholar
  10. 10.
    J. Sheng, L. Wang, G.E. Lux, and Y. Gao, J. Electron. Mater. 26, 588 (1997).Google Scholar
  11. 11.
    M.B. Reine, A.K. Sood, and T.J. Tredwell, Semiconductors and Semimetals, Vol. 18, eds. R.K. Willardson and A.C. Beer (New York: Academic, 1981), pp. 201–311.Google Scholar
  12. 12.
    C.A. Hougen, J. Appl. Phys. 66, 3763 (1989).CrossRefGoogle Scholar
  13. 13.
    W.P. Dumke, Phys. Rev. 105, 139 (1957).CrossRefGoogle Scholar
  14. 14.
    J.I. Pankove, Optical Processes in Semiconductors (Englewood Cliffs, NJ: Prentice-Hall, 1971), pp. 107–159.Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • R. A. Coussa
    • 1
  • A. M. Gallagher
    • 1
  • K. Kosai
    • 1
  • L. T. Pham
    • 1
  • G. K. Pierce
    • 1
  • E. P. Smith
    • 1
  • G. M. Venzor
    • 1
  • T. J. De Lyon
    • 2
  • J. E. Jensen
    • 2
  • B. Z. Nosho
    • 2
  • J. A. Roth
    • 2
  • J. R. Waterman
    • 3
  1. 1.Raytheon Vision SystemsGoleta
  2. 2.HRL Laboratories LLCMalibu
  3. 3.Naval Research LaboratoryWashington, DC

Personalised recommendations