Journal of Electronic Materials

, Volume 32, Issue 10, pp 994–999 | Cite as

TaN-TiN binary alloys and superlattices as diffusion barriers for copper interconnects

  • H. Wang
  • A. Gupta
  • Ashutosh Tiwari
  • X. Zhang
  • J. Narayan
Special Issue Paper


Binary alloys and superlattices of TaN-TiN thin films were grown on Si(100) substrates with a TiN buffer layer using pulsed laser deposition. A special target assembly was used to manipulate the concentrations of these binary component films. The 60% TaN resulted in a TaN (3 nm)/TiN (2 nm) superlattice, while 30% and 70% TaN generated uniform TaxTi1−xN alloys. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) confirmed the single-crystalline nature of these films. Four-point probe resistivity measurements suggest that these alloy and superlattice films have a lower resistivity than pure single-crystalline TaN films. The Cu-diffusion characteristic studies showed that these materials would have the potential as high-temperature diffusion barriers for Cu in ultra-large-scale integration technology.

Key words

TaN TiN superlattice alloy Cu diffusion barrier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Wittmer, B. Studer, and H. Melchiar, J. Appl. Phys. 52, 5722 (1981).CrossRefGoogle Scholar
  2. 2.
    J. Narayan, P. Tiwari, J. Singh, R. Chowdhury, and T. Zheleva, Appl. Phys. Lett. 61, 1290 (1992); J. Narayan, U.S. patent 5, 406,123 (11 April 1995); J. Narayan and B.C. Larson. J. Appl. Phys. 93, 278 (2003).CrossRefGoogle Scholar
  3. 3.
    M. Stavrev, C. Wenzel, A. Moller, and K. Drescher, Appl. Surf. Sci. 91, 257 (1995).CrossRefGoogle Scholar
  4. 4.
    S.P. Murarka, Mater. Sci. Eng. R 19, 87 (1997).CrossRefGoogle Scholar
  5. 5.
    G.S. Chen, S.C. Huang, S.T. Chen, T.J. Yang, P.Y. Lee, J.H. Jou, and T.C. Lin, Appl. Phys. Lett. 76, 2895 (2000).CrossRefGoogle Scholar
  6. 6.
    M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chuang, and H.T. Chiu, J. Appl. Phys. 79, 6932 (1996).CrossRefGoogle Scholar
  7. 7.
    D. Gerstenberg and C.J. Calbick, J. Appl. Phys. 35, 402 (1964).CrossRefGoogle Scholar
  8. 8.
    N. Terao, Jpn. J. Appl. Phys. 10, 248 (1971).CrossRefGoogle Scholar
  9. 9.
    Y.K. Lee, K.M. Latt, K. Jaehyung, T. Osipowicz, C. Sher-Yi, and K. Lee, Mater. Sci. Eng. B 77, 282 (2000).CrossRefGoogle Scholar
  10. 10.
    K.H. Min, K.C. Chun, and K.B. Kim, J. Vac. Sci. Technol. B 14, 3263 (1996).CrossRefGoogle Scholar
  11. 11.
    C.-S. Shin, D. Gall, Y.-W. Kim, P. Desjardins, I. Petrov, and J.E. Greene, J. Appl. Phys. 90, 2879 (2001).CrossRefGoogle Scholar
  12. 12.
    H. Wang, A. Tiwari, A. Kvit, X. Zhang, and J. Narayan, Appl. Phys. Lett. 80, 2323 (2002).CrossRefGoogle Scholar
  13. 13.
    H. Wang, A. Tiwari, X. Zhang, A. Kvit, and J. Narayan, Appl. Phys. Lett. 81, 1453 (2002).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • H. Wang
    • 1
  • A. Gupta
    • 1
    • 2
  • Ashutosh Tiwari
    • 1
  • X. Zhang
    • 2
  • J. Narayan
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleigh
  2. 2.Materials Science and Technology DivisionLos Alamos National LaboratoryLos Alamos

Personalised recommendations